Your Name \square Your Signature

TA's Name \#

Quiz Section

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of handwritten notes (one-sided).
- Graphing calculators are not allowed. Do not share notes.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around your final answer to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper. Good luck!

Problem	Total Points	Score
1	8	
2	12	
3	10	
4	10	
5	10	
6	3	
Total		

Don't open the test until everyone has a copy and the start of the test is announced.

1. [8 points total] Evaluate the following integrals.
(a) $[4$ points $] \int \frac{x^{2}}{\sqrt[3]{x^{3}+2}} d x$
(b) [4 points] $\int \frac{\sec ^{2} \theta}{1+\tan ^{2} \theta} d \theta$
2. [12 points total] Evaluate the following integrals. Simplify as mush as possible but leave your answers in exact form. Do not give a decimal answer.
(a) $[4$ points $] \int_{0}^{1} \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$
(b) [4 points] $\int_{1}^{e} \frac{\ln x}{x} d x$
(c) [4 points] $\int_{-2}^{2} x\left(1+x^{2}\right)^{17} d x$
3. [$\mathbf{1 0}$ points total] Let \mathcal{R} be a region in the first quadrant bounded by the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

(a quarter of an ellipse). Use the left end-point Riemann sum with $n=3$ to estimate the area of the region \mathcal{R}. Draw the picture of the region and clearly sketch the three rectangles you use for approximation.
Note: For this problem you may either leave your answer in the exact form (e.g., $\sqrt{5}+1$) or give a decimal.
4. [10 points total]

A small electric car travels along a straight track. The velocity of the car is given by the function

$$
v(t)=12 t-3 t^{2} \mathrm{ft} / \mathrm{sec}
$$

(a) [4 points] How far away is the car from its starting point after 5 seconds?
(b) [6 points] Find the total distance traveled by the car during the first 5 seconds.
5. [10 points total] Let \mathcal{R} be the region in the first quadrant bounded by the curves $y=x^{2}$, $y=2-x^{2}$ and the vertical line $x=0$.
(a) $[2$ points $]$ Sketch \mathcal{R}.
(b) [6 points] Compute the volume of the solid of revolution obtained by rotating \mathcal{R} around the line $y=-1$.
6. [3 Bonus points total] (No partial credit.) Let \mathcal{R} be the region in the first quadrant bounded by the curves $y=x^{2}, y=2 x-x^{2}$ and the vertical line $x=0$. Set up (but do not evaluate) the integral to compute the volume of the solid of revolution obtained by rotating \mathcal{R} around the y-axis. Use Disk/Washer method.

