Your Name
\square

Your Signature
\square

TA's Name \#

Quiz Section

1. [8 points total] Evaluate the following integrals.
(a) $[4$ points $] \int \frac{x^{2}}{\sqrt[3]{x^{3}+2}} d x$

Answer. $\int \frac{x^{2}}{\sqrt[3]{x^{3}+2}} d x \stackrel{u=x^{3}+2}{=} \quad \frac{1}{3} \int u^{-\frac{1}{3}} d u=\frac{1}{2} u^{\frac{2}{3}}+C=\frac{1}{2}\left(x^{3}+2\right)^{\frac{2}{3}}+C$
(b) [4 points] $\int \frac{\sec ^{2} \theta}{1+\tan ^{2} \theta} d \theta$

Answer. $\int \frac{\sec ^{2} \theta}{1+\tan ^{2} \theta} d \theta d x \quad \stackrel{u=\tan \theta}{=} \quad \int \frac{1}{1+u^{2}} d u=\arctan (u)+C=$ $\arctan (\tan \theta))+C=\theta+C$

Alternatively, one can observe that the trigonometric identity $\sec ^{2} x=1+\tan ^{2} x$ implies that $\frac{\sec ^{2} \theta}{1+\tan ^{2} \theta}=1$. Hence, $\int \frac{\sec ^{2} \theta}{1+\tan ^{2} \theta} d \theta=\int 1 d \theta=\theta+C$
2. [12 points total] Evaluate the following integrals. Simplify as mush as possible but leave your answers in exact form. Do not give a decimal answer.
(a) $\left[4\right.$ points] $\int_{0}^{1} \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$

Note. This question the way it is stated DOES NOT make sense. The integrand is not defined on the interval $[1, e]$ (try plugging e into $\sqrt{1-u^{2}}$). Nonetheless we were giving full credit to people who got arcsin $e-\pi / 2$ even though arcsin is undefined at e. The problem was supposed to ask the following:

Evaluate $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x$
Answer. $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-e^{-2 x}}} d x \stackrel{u=e^{-x}}{=}-\int_{1}^{1 / e} \frac{1}{\sqrt{1-u^{2}}} d u=\int_{1 / e}^{1} \frac{1}{\sqrt{1-u^{2}}}=\left.\arcsin u\right|_{\frac{1}{e}} ^{1}=$ $\frac{\pi}{2}-\arcsin \frac{1}{e}$
(b) [4 points] $\int_{1}^{e} \frac{\ln x}{x} d x$

Answer. $\int_{1}^{e} \frac{\ln x}{x} d x \stackrel{u=\ln x}{=} \quad \int_{0}^{1} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}$
(c) $[4$ points $] \int_{-2}^{2} x\left(1+x^{2}\right)^{17} d x$

Answer. $\int_{-2}^{2} x\left(1+x^{2}\right)^{17} d x=0$ because the integrand is an odd function.
3. [10 points total] Let R be a region in the first quadrant bounded by the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

(a quarter of an ellipse). Use the left end-point Riemann sum with $n=3$ to estimate the area of the region R. Draw the picture of the region and clearly sketch the three rectangles you use for approximation.

Answer. The x-intercept in the first quadrant is $x=2$.
$\Delta x=2 / 3$. The left-end points are $0,2 / 3$ and $4 / 3$. The height at these points is 3 , $2 \sqrt{2}$ and $\sqrt{5}$ respectively. Hence, $R_{3}=\frac{2}{3}(3+2 \sqrt{2}+\sqrt{5}) \sim 5.376$.

4. [10 points total]

A small electric car travels along a straight track. The velocity of the car is given by the function

$$
v(t)=12 t-3 t^{2} \mathrm{ft} / \mathrm{sec}
$$

(a) [4 points] How far away is the car from its starting point after 5 seconds?

Answer. $\int_{0}^{5} v(t) d t=\int_{0}^{5} 12 t-3 t^{2} d t=\left.\left(6 t^{2}-t^{3}\right)\right|_{0} ^{5}=25 \mathrm{~m}$.
(b) [6 points] Find the total distance traveled by the car during the first 5 seconds.

Answer. First, we solve the inequality $v(t)=12 t-3 t^{2}>0$. We get that $v(t)>0$ when $t<4$ and $v(t)<0$ when $t>4$. The total distance $=\int_{0}^{5}|v(t)| d t=$ $\int_{0}^{4} 12 t-3 t^{2} d t+\int_{4}^{5} 3 t^{2}-12 t d t=\left.\left(6 t^{2}-t^{3}\right)\right|_{0} ^{4}+\left.\left(t^{3}-6 t^{2}\right)\right|_{4} ^{5}=32+(-25-(-32))=$ 39 m .
5. [10 points total] Let \mathcal{R} be the region in the first quadrant bounded by the curves $y=x^{2}, y=2-x^{2}$ and the vertical line $x=0$.
(a) $[\mathbf{2}$ points $]$ Sketch \mathcal{R}.
(b) $[8$ points $]$ Compute the volume of the solid of revolution obtained by rotating \mathcal{R} around the line $y=-1$.

Answer.

Step 1. (see a). Find intersection point(s) of the graphs:
$x^{2}=2-x^{2}$
$2 x^{2}=2$
$x= \pm 1$
Since we are in the first quadrant, the only solution is $x=1$.
Also, sketch a typical washer here. It is perpendicular to the x-axis. The variable is \mathbf{x}. Step 2. $A(x)=\pi R_{x}^{2}-\pi r_{x}^{2}=\pi\left(2-x^{2}+1\right)^{2}-\pi\left(x^{2}+1\right)^{2}=\pi\left(3-x^{2}\right)^{2}-\pi\left(x^{2}+1\right)^{2}=$ $\pi\left(8-8 x^{2}\right)$.
Steps 3,4. $V=\pi \int_{0}^{1}\left(8-8 x^{2}\right) d x=\left.\pi\left(8 x-\frac{8}{3} x^{3}\right)\right|_{0} ^{1}=\frac{16 \pi}{3}$.

