Midterm II info and practice problems
 Math 125, Sections C\&D
 November, 2007

For general midterm info and a sample of the cover sheet see Midterm I info.
Midterm II will cover

1. Volume (6.2, 6.3)
2. Work (6.4)
3. Average (mean) value (6.5)
4. Techniques of integration: substitution, integration by parts, trig integrals, trig substituion, partial fractions, rationalizing substitution, and all possible combinations (7.17.5)
5. Numerical integration (7.7)

For the actual midterm you may use one 8×11.5 sheet of handwritten notes (one-side only). You may use your "simple" scientific calculator on the exam. No books, printed notes or graphing calculators. You have to show ALL YOUR WORK to get full credit.

This is intended for practice and is much longer than the actual midterm. There are sample midterms linked to our class webpage; you can find even more old midterms at the unified MATH 125 website. To get extra practice on volumes, look up samples of Midterm I.

Practice Problems.

1. Problems 5, 6 and 7 from week 6 homework (lots of useful practice!)
2. Evaluate the following integrals:
(a) $\int x \cos ^{2}(x) d x$
(b) $\int x \sec ^{2}(x) \tan (x) d x$
(c) $\int \frac{e^{x}}{e^{3 x}+3 e^{2 x}+3 e^{x}} d x$
(d) (more difficult) $\int \sec ^{2}(x) \sqrt{\tan ^{2}(x)-4} d x$
(e) (more difficult) $\int \frac{\sqrt{\tan ^{2}(x)+9}}{\sin ^{2}(x)} d x$
3. Use trapezoidal rule with $n=4$ to estimate the area under the graph of $y=\sqrt{2+x^{4}}$ on the interval $[0,2]$ (First set up the integral, then estimate. Leave your answer in the sum form. Do not simplify or evaluate.)
4. Let \mathcal{R} be the region in the first quadrant bounded by the curves $y=x^{3}$ and $y=2 x-x^{2}$.
(a) Sketch \mathcal{R}.

For b) and c) indicate clearly whether you are using shells or washers. Sketch a typical rectangle to be rotated to obtain either a shell or a washer, depending on the method you use.
(b) Compute the volume obtained by rotating \mathcal{R} around the x-axis.
(c) Compute the volume obtained by rotating \mathcal{R} around the line $x=-1$.
5. Sketch the region in the first quadrant bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, the line $x=2 y$, and the x-axis. Find the average height of the region. (You can give your answer either as a decimal or in exact form.)
6. A spring has a natural length of 20 cm . If a 25 N force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?
7. A 20 -foot rope hangs over the edge of a cliff. It rained earlier so the rope is wet, and since the water tends to seep downwards the bottom of the rope is heavier than the top. Suppose that the weight density of the wet rope at the distance y feet from the top is $1+\frac{3}{80} y \mathrm{lb} / \mathrm{ft}$. Calculate the work needed to pull the rope up to the top.
8. A tank full of water has the shape of a hemisphere. The diameter of the tank is 10 m . Set up and evaluate the integral for the work required to pump all of the water out of the tank (through the top).
9. A bag of sand originally weighs 160 lbs . It is lifted at a constant rate of $4 \mathrm{ft} / \mathrm{min}$. The sand leaks out of the bag at a constant rate so that when it has been lifted 20 ft only half of the sand is left. How much work is done lifting the bag 20 ft ?
10. Consider the region in the first quadrant bounded by $y=x^{\frac{3}{2}}, x=0$, and $y=8$. This region is revolved around the y-axis to create a three dimensional solid. Suppose we have a tank with the shape of that solid, oriented so that the y-axis is perpendicular to the ground, the origin is at the bottom of the tank, and units are in meters (so the tank is 8 m tall). If the tank is filled with a liqiud with mass density $2300 \mathrm{~kg} / \mathrm{m}^{3}$, how much work is required to pump all of the liquid to the top of the tank?
11. The line $y=3 x$, for $0 \leq x \leq 1$, it rotated around the y-axis to form a cone (units are in feet). The cone is filled with melted ice cream, which weighs $59.2 \mathrm{lb} / \mathrm{ft}^{3}$. How much work does it take to pump all of the ice cream up to the height $y=10$.
12. (more difficult) Newton's law of Universal Gravitation implies that an object in Earth's gravitational field located $r \mathrm{~km}$ from the center of the Earth experiences gravitational acceleration $g(r)=\frac{c}{r^{2}} \mathrm{~m} / \mathrm{s}^{2}$. Assume that the gravitational acceleration on the surface of the Earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and the radius of the Earth is equal to $6,500 \mathrm{~km}$. The "geostationary" orbit is about $42,000 \mathrm{~km}$ from the center of the Earth. A rocket takes a satellite to the orbit. The initial mass of the rocket and the satellite is $5,000 \mathrm{~kg}$. The mass decreases as the fuel burns. Assume that the mass is a linear function of the distance from the center of the Earth. The final mass of the satellite at the geostationary orbit is 1000 kg . What is the total amount of work needed to place satellite in its orbit? Ignore the gravitational attraction of other celestial bodies such as the Sun and the Moon.

