Oct. 2
Name:
No books, notes or graphing calcuators. Turn off your cell phones.

1. Find the most general anti-derivative of the function

$$
f(x)=\frac{1-x^{2}}{x}
$$

SOLUTION: Note that

$$
\frac{1-x^{2}}{x}=\frac{1}{x}-\frac{x^{2}}{x}=\frac{1}{x}-x
$$

so since the anti-derivative of $1 / x$ is $\ln (x)$ and the anti-derivative of x is $x^{2} / 2$, the most general anti-derivative of $f(x)$ is

$$
\ln (x)-\frac{x^{2}}{2}+C
$$

where C is any constant.
2. Considetr the graph of the function $y=x^{3}$ on the interval $[0,1]$. Estimate the area under the graph using the Right end-point Riemann sum for $n=4$. You can use a simple calculator for this problem. Do you get an under-estimate or an over-estimate?

First break the interval $[0,1]$ up into 4 subintervals of equal size (i.e. $[0,1 / 4],[1 / 4,1 / 2],[1 / 2,3 / 4],[3 / 4,1]$). Then compute the Right end-point Riemann Sum as the text describes:

$$
\begin{aligned}
R_{4} & =f\left(\frac{1}{4}\right) \times \frac{1}{4}+f\left(\frac{2}{4}\right) \times \frac{1}{4}+f\left(\frac{3}{4}\right) \times \frac{1}{4}+f\left(\frac{4}{4}\right) \times \frac{1}{4} \\
& =\frac{1}{4} \times\left(\left(\frac{1}{4}\right)^{3}+\left(\frac{2}{4}\right)^{3}+\left(\frac{3}{4}\right)^{3}+\left(\frac{4}{4}\right)^{3}\right) \\
& =\left(\frac{1}{4}\right)^{4} \times\left(1^{3}+2^{3}+3^{3}+4^{3}\right) \\
& =\frac{100}{256}=0.390625
\end{aligned}
$$

Since x^{3} is increasing on the interval $[0,1]$, the Right end-point Riemann sum is an over-estimate for the area.
3. [Bonus problem: 1 bonus point] Find an anti-derivative of the function

$$
f(x)=(1+\ln x) x^{x}
$$

Ask a TA or the professor during office hours for the solution.

