No books, notes or graphing calculators. Turn off your cell phones. Good luck!

1. Consider the region in the first quadrant bounded by the curves $y=2(x-1)^{2}, y=x^{2}-2 x+5$ and the y-axis.
b. Find the volume of the solid of revolution obtained by rotating the region around the y-axis. State clearly which method you use: shells or washers. Sketch a typical shell or washer.

For the Shell Method:
$V=2 \pi \int_{a}^{b} x h(x) \mathrm{d} x$, and so to find the endpoints we set

$$
2(x-1)^{2}=x^{2}-2 x+5 \Rightarrow 2 x^{2}-4 x+2=x^{2}-2 x+5 \Rightarrow x^{2}-2 x-3=0 \Rightarrow x=3, x=-1
$$

Thus, since the region is also bound by $y=0$, the endpoints are $a=0$ and $b=3$, so we have:
$V=2 \pi \int_{0}^{3} x h(x) \mathrm{d} x$ where $h(x)$ is the height of each slice, so

$$
\begin{aligned}
V & =2 \pi \int_{0}^{3} x\left(x^{2}-2 x+5-2(x-1)^{2}\right) \mathrm{d} x \\
& =2 \pi \int_{0}^{3} x\left(x^{2}-2 x+5-2 x^{2}+4 x-2\right) \mathrm{d} x \\
& =2 \pi \int_{0}^{3}\left(-x^{3}+2 x^{2}+3 x\right) \mathrm{d} x=2 \pi\left(\frac{-x^{4}}{4}+\frac{2 x^{3}}{3}+\left.\frac{3 x^{2}}{2}\right|_{0} ^{3}\right) \\
& =2 \pi\left(\frac{-81}{4}+\frac{54}{3}+\frac{27}{2}\right)=2 \pi\left(\frac{126-81}{4}\right)=\frac{45 \pi}{2}
\end{aligned}
$$

