No books, notes or graphing calculators. Turn off your cell phones. Good luck!

1. Determine whether the following integral is convergent or divergent, and evaluate it if it is convergent.

$$
\int_{0}^{3} \frac{1}{\sqrt[3]{t}} \mathrm{dt}
$$

Solution. We first express the integral of terms of a limit:

$$
\lim _{s \rightarrow 0^{+}} \int_{2}^{3} \frac{1}{t^{1 / 3}} \mathrm{dt}=\lim _{s \rightarrow 0^{+}} \int_{s}^{3} t^{-1 / 3}=\left.\lim _{s \rightarrow 0^{+}} \frac{3 t^{2 / 3}}{2}\right|_{s} ^{3}=\lim _{s \rightarrow 0^{+}}\left(\frac{3 \cdot 3^{2 / 3}}{2}-\frac{3 s^{2 / 3}}{2}\right)=\frac{3^{5 / 3}}{2}-0=\frac{3^{5 / 3}}{2}
$$

Since the limit exists, the integral is convergent.
2. Find the coordinates of the center of mass of the uniform flat plate bounded by the x-axis, the graph of the function $y=\ln x$ and the vertical line $x=e$.

Solution. Step I. Find the area. We compute $A=\int_{1}^{e} \ln x \mathrm{dx}=\mathrm{x} \ln \mathrm{x}-\left.\mathrm{x}\right|_{1} ^{e}=1$.
Step II. Find the moment $M_{y}=\int_{1}^{e} x \ln x \mathrm{dx}=\frac{\mathrm{x}^{2}}{2} \ln \mathrm{x}-\left.\frac{\mathrm{x}^{2}}{4}\right|_{1} ^{e}=\frac{e^{2}+1}{4}$
Hence, $\bar{x}=\frac{M_{y}}{A}=\frac{e^{2}+1}{4}$
Step 3. $M_{x}=\frac{1}{2} \int_{1}^{e} \ln ^{2} x \mathrm{dx}=\frac{1}{2}\left(\mathrm{x}^{2} \ln ^{\mathrm{x}}-2 \mathrm{x} \ln \mathrm{x}+\left.2 \mathrm{x}\right|_{1} ^{e}\right)=\frac{e-2}{2}$
Thus, $\bar{y}=\frac{M_{x}}{A}=\frac{e-2}{2}$. Therefore, the center of mass is $(\bar{x}, \bar{y})=\left(\frac{e^{2}+1}{4}, \frac{e-2}{2}\right)$.

