Review homework, quizzes, examples from book and lecture examples. Do practice problems and at least a couple of sample midterms. Have all needed formulas and trigonometric functions special values in your notes.

§6.2 Volumes by disks/washers:

- Understand Disks and Washers: general formula

$$
V=\int_{a}^{b} \pi R^{2} d x \text { (Disks) } \quad V=\int_{a}^{b} \pi R^{2}-\pi r^{2} d x \text { (Washers). }
$$

- How to slice and in which variable to integrate, depending on the situation.
- How to compute R (and r if necessary) in terms of the variable of integration.

§6.3 Volumes by shells:

- When to use?
- Understand the general formula $V=\int_{a}^{b} 2 \pi r h d x$
- How to slice and in which variable to integrate, depending on the situation.
- How to compute r and h in terms of the variable of integration.

§6.4 Work:

- Be able to set up and solve problems of all types described in class
- Understand how to use Riemann sums to set up the integrals
- Spring problems, tank problems, chain problems

§6.5 Average value of a function:

- Know and be able to apply the formula to find the average value of a continuous function $f(x)$ over an interval $[a, b]$
- Understand how it relates to area under curve

METHODS OF INTEGRATION §7.1-7.5: Know how and when to apply each of these. Do lots of practice problems: examples in book, from class, homework (especially week 6 homework hand-out), exercises at the end of chapter (page 541), or from sample midterms.
7.1 Integration by Parts
7.2 Trig Integrals

- \sin / \cos : trig formulas and strategies for solving integrals
- sec / tan: trig formulas and strategies for solving integrals
- Have the integrals of tan and sec on your list of formulas.
7.3 Trig Substitution
- Three main patterns: be familiar with them and when to apply each
- Completing the square: when is it necessary? How to do it?
7.4 Partial Fractions
- Understand the method and when it applies.
- Be able to do polynomial division, and to factor the denominator
- How to break down into partial fractions: repeated versus non-repeated factors and linear versus quadratic factors
- Sometimes you need to do a substitution first, then PF
7.5 Strategy for Integration: how to choose an optimal method. Guidelines + practice, practice, practice.
7.7 Approximating Integrals
- Know and be able to apply correctly the Midpoint Rule, Trapezoidal Rule and Simpson's Rule
- Problems can involve a function or a table of data; Sometimes can be combined with a work/volume/etc problem.

Integration formulas that you can use

1. Power Rule $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
2. $\int \frac{1}{x} d x=\ln |x|+C$
3. $\int e^{x} d x=e^{x}+C$
4. $\int \sin x d x=-\cos x+C, \int \cos x d x=\sin x+C$
5. $\int \sec ^{2} x d x=\tan x+C, \int \sec x \tan x d x=\sec x+C$
6. $\int \tan x d x=\ln |\sec x|+C, \int \sec x d x=\ln |\tan x+\sec x|+C$ $\int \cot x d x=-\ln |\csc x|+C, \int \csc x d x=\ln |\csc x-\cot x|+C$
7. $\int \ln x d x=x \ln x-x+C$
8. $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C, \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+C$

Anything else: must show work!

