\qquad
\qquad

MIDTERM I Solutions
Math 126, Section A
January 25, 2007

1. (6pts) Find the Taylor series for the function $f(x)=e^{x}$ based at $a=1$.

Answer. $f(x)=\sum_{0}^{\infty} e \frac{(x-1)^{n}}{n!}$, converges everywhere.
2. (12pts) Let $f(x)=\int_{0}^{x} \frac{\cos t-1}{t^{2}} d t$.
(a) (9pts) Find the Taylor series of $f(x)$ based at $a=0$.

Solution. First, we compute the Taylor series at 0 for the function under the integral.
$\cos t-1=\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\ldots\right)-1=-\frac{t^{2}}{2}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\ldots$.
$\frac{\cos t-1}{t^{2}}=\frac{-\frac{t^{2}}{2}+\frac{t^{4}}{4}-\frac{t^{6}}{6!}+\ldots}{t^{2}}=-\frac{1}{2}+\frac{t^{2}}{4!}-\frac{t^{4}}{6!}+\ldots=\sum_{1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n)!}$.
Integrating, we get $f(x)=\int_{0}^{x}\left(-\frac{1}{2}+\frac{t^{2}}{4!}-\frac{t^{4}}{6!}+\ldots\right) d t=-\frac{x}{2}+\frac{x^{3}}{3 \cdot 4!}-\frac{x^{5}}{5 \cdot 6!}+\ldots=$ $\sum_{1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)(2 n)!}$
(b) (3pts) Find $f^{(5)}(0)$.

Solution. We can read off $T_{5}(x)$ for $f(x)$ from the series above:

$$
T_{5}(x)=-\frac{x}{2}+\frac{x^{3}}{3 \cdot 4!}-\frac{x^{5}}{5 \cdot 6!} .
$$

Hence, the coefficient by x^{5} is $-\frac{1}{5 \cdot 6!}$. On the other hand, by the general formula for Taylor polynomials, it must be $\frac{f^{(5)}(0)}{5!}$. Hence,

$$
\frac{f^{(5)}(0)}{5!}=-\frac{1}{5 \cdot 6!}
$$

Solving for $f^{(5)}(0)$, we get $f^{(5)}(0)=-1 / 30$.
3. (15pts) Let $f(x)=\cos 2 x$.
(a)(5pts) Find the Quadratic approximation for $f(x)$ at $a=0$.

Answer. $T_{2}(x)=1-2 x^{2}$.
(b) (5pts) Find the error bound for the Quadratic approximation above on the interval $[-0.5,0.5]$.

Solution. By the Taylor's inequality, we have $\left|f(x)-T_{2}(x)\right| \leq \frac{M}{6}|x|^{3}$. M is the maximum of $f^{\prime \prime \prime}(x)=8 \sin (2 x)$ on the interval $[-0.5,0.5]$. Since $|\sin (2 x)|$ is bounded by 1 , we can take $M=8$. Furthermore, $|x|$ is bounded by 0.5 on our interval. Hence, the error bound is $\frac{8}{6}(0.5)^{3}=1 / 6$.
Variation. Many students observed that we can be even more efficient finding M. Since $f^{\prime \prime \prime}(x)=8 \sin (2 x)$ is increasing on the interval $[-0.5,0.5]$, the maximum occurs at $x=0.5$. Hence, $M=8 \sin (2 * 0.5)=8 \sin (1) \simeq 8 * 0.841=6.73$ (Be careful here: x is measured in RADIANS, not in degrees). With this M, the error bound becomes $\frac{6.73}{6}(0.5)^{3} \simeq 0.14$. It was OK to leave your answer in the exact form: $\frac{\sin (1)}{6}$.
(c)(5pts) Find the $n^{\text {th }}$ Taylor polynomial $T_{n}(x)$ of $f(x)$ based at $a=0$ such that the error $\left|T_{n}(x)-\cos x\right|$ is at most 0.1 on the interval $[-0.5,0.5]$. Justify your answer.

Solution. When doing the derivatives in (a) we can observe the pattern:

$$
f^{(n+1)}(x)= \pm 2^{n+1} \sin (2 x) \quad \text { if } \quad \mathrm{n} \quad \text { is even, }
$$

and

$$
f^{(n+1)}(x)= \pm 2^{n+1} \cos (2 x) \quad \text { if } \quad \mathrm{n} \quad \text { is } \quad \text { odd. }
$$

In either case, $\left|f^{(n+1)}(x)\right| \leq 2^{n+1}$. Hence, in the Taylor's inequality

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x|^{n+1}
$$

we can take M to be 2^{n+1}, since M is the bound for $\left|f^{(n+1)}(x)\right|$. (It is very important to notice here that M DEPENDS on n. In particular, it is wrong to simply take M that we bound in (b) and use it here for all derivatives. M from (b) was specific for the third derivative of f.)
With $M=2^{n+1}$, the Taylor's inequality becomes

$$
\left|f(x)-T_{n}(x)\right| \leq \frac{2^{n+1}}{(n+1)!}|x|^{n+1}
$$

Since $|x|$ is at most 0.5 on our interval, we further simplify the bound to be

$$
\frac{2^{n+1}}{(n+1)!}|0.5|^{n+1}=\frac{1}{(n+1)!}
$$

Hence, it suffices to find n such that $\frac{1}{(n+1)!} \leq 0.1$. By trial and error method we get that $n=3$ works. Hence, $n \geq 3$.
Variation. Instead of figuring out the general formula for $f^{(n+1)}(x)$, we can apply the "trial-and-error" method from the very beginning. From (b) we know that the Taylor inequality for $n=2$ gives the bound 0.14 . Try $n=3$. The calculation is very similar to the one we did in (b), but the error bound turns out to be smaller than 0.1. Hence, $n=3$ works.
Comment. There was one student who observed that $n=2$ works as well! Indeed, the Taylor polynomials for $\cos (2 x)$ only have even powers in them. Hence, $T_{3}(x)=T_{2}(x)$. Since T_{3} works, T_{2} must work too.
4. (7pts) Check whether the points $(1,2,3),(-2,5,7)$, and $(-5,8,11)$ lie on the same line.

Solution. Let $A=(1,2,3), B=(-2,5,7)$, and $C=(-5,8,11)$. The points are on the same line if and only if the vectors $A B$ and $A C$ are colinear. We compute $A B=$ $(-3,3,4)$, and $A C=(-6,6,8)=2(-3,3,4)$. Since these vectors are proportional to each other, they lie on the same line. Therefore, so do the points A, B, and C.
Remark: This problem can also be solved by computing the angle between the vectors $A B$ and $A C$, or by computing the area of the trianlge $A B C$ via the cross product.
5. (9pts) Find the angle between the two main diagonals of a unit cube. (A unit cube is a cube with the vertices $(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)$; the main diagonals are the diagonals connecting the vertex $(0,0,0)$ with the vertex $(1,1,1)$, and the vertex $(1,0,0)$ with the vertex $(0,1,1))$.

Solution. We just have to compute the angle between the diagonal vectors $\mathbf{u}=$ $(\mathbf{1}, \mathbf{1}, \mathbf{1})-(\mathbf{0}, \mathbf{0}, \mathbf{0})=(\mathbf{1}, \mathbf{1}, \mathbf{1})$ and $\mathbf{v}=(\mathbf{0}, \mathbf{1}, \mathbf{1})-(\mathbf{1}, \mathbf{0}, \mathbf{0})=(-\mathbf{1}, \mathbf{1} . \mathbf{1})$.
We get $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{1}{3}$. Hence, $\theta=\arccos \left(\frac{1}{3}\right)$.

