\qquad
\qquad

MIDTERM II

Math 126, Section A
February 22, 2007

Problem	Total Points	Score
1	12	
2	12	
3	12	
4	14	
Total	50	
5(Bonus)	3	

- You may use a scientific calculator and one one-sided sheet of handwritten notes. No other notes, books or calculators are allowed. Please turn off your cell phone.
- Show all your work to get full credit.
- Read instructions for each problem CAREFULLY.
- Leave all your answers in EXACT form.
- Check your work!

1. (10pts) Consider the curve given by the equation in polar coordinates

$$
r=4 \cos \theta+\sin \theta
$$

(a)(5pts) Find the Cartesian equation of the curve. Sketch the curve.

Solution. Multuply the equation by r :

$$
\begin{aligned}
& r^{2}=4 r \cos \theta+r \sin \theta \\
& \text { Hence, } x^{2}+y^{2}=4 x+y \\
& x^{2}-4 x+y^{2}-y=0 \\
& (x-2)^{2}+(y-1 / 2)^{2}=\frac{17}{4}
\end{aligned}
$$

Hence, the curve is a circle with the center $(2,1 / 2)$ and radius $\sqrt{17} / 2$.
(b) $(5 \mathrm{pts})$ Find the equation of the tangent line to the curve at the point $\theta=\pi / 4$.

Solution.

For an equation of a tangent line on the plane we need a slope and a point. Observe that we can interpret the curve given in polar coordinates as a parametric curve with the parameter θ :

$$
(x, y)=(r(\theta) \cos \theta, r(\theta) \sin \theta)
$$

The slope is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d}{d \theta}(r(\theta) \sin \theta)}{\frac{d}{d \theta}(r(\theta) \cos \theta)}=\frac{r^{\prime}(\theta) \sin \theta+r(\theta) \cos \theta}{r^{\prime}(\theta) \cos \theta-r(\theta) \sin \theta}
$$

Using the equaion $r=4 \cos \theta+\sin \theta$ which defines the curve we compute

$$
r^{\prime}(\theta)=-4 \sin \theta+\cos \theta
$$

Hence,

$$
r(\pi / 4)=5 / \sqrt{2} ; \quad r^{\prime}(\pi / 4)=-3 / \sqrt{2} .
$$

Plugging these values together with $\theta=\pi / 4$ into the formula for $d y / d x$ above, we get

$$
\frac{d y}{d x}=\frac{-\frac{3}{\sqrt{2}} \frac{1}{\sqrt{2}}+\frac{5}{\sqrt{2}} \frac{1}{\sqrt{2}}}{-\frac{3}{\sqrt{2}} \frac{1}{\sqrt{2}}-\frac{5}{\sqrt{2}} \frac{1}{\sqrt{2}}}=-\frac{1}{4} .
$$

So, we have found the slope. Do not stop here! To find a point on the line, we plug in $\theta=\pi / 4$ into the equations for x, y :

$$
x=r(\pi / 4) \cos (\pi / 4)=\frac{5}{\sqrt{2}} \frac{1}{\sqrt{2}}=\frac{5}{2} ; \quad y=r(\pi / 4) \sin (\pi / 4)=\frac{5}{2} .
$$

Hence, the point is $\left(\frac{5}{2}, \frac{5}{2}\right)$. The equation of the line in the point-slope form is

$$
y-\frac{5}{2}=-\frac{1}{4}\left(x-\frac{5}{2}\right)
$$

2. (12pts) Consider the parametric curve given by the vector function

$$
\vec{r}(t)=\left(t, t^{2}, t^{3}\right)
$$

(this curve is called a twisted cubic).
(a) (4pts) Find the equation of the normal plane at the point when $t=1$.

Hint. The normal plane is the plane perpendicular to the tangent line.

Solution. $\vec{r}(t)=\left(1,2 t, 3 t^{2}\right)$;
$\vec{r}^{\prime}(1)=(1,2,3)$;
and this is the normal vector to the normal plane in question. The point on the curve at the time $t=1$ has coordinates $(1,1,1)$. Hence, the equation is

$$
(x-1)+2(y-1)+3(z-1)=0
$$

or $x+2 y+3 z=6$.
(b) (4pts) Find the equation of the normal plane at the point $(-1,1,-1)$.

Solution. First, we find t corresponding to the given point. Since $\left(t, t^{2}, t^{3}\right)=$ $(-1,1,-1)$, we conclude $t=-1$. Now proceed as in part (a).
$\vec{r}^{\prime}(-1)=(1,-2,3)$;
this is the normal vector to the normal plane in question. The point is $(-1,1,-1)$. Hence, the equation of the plane is

$$
(x+1)-2(y-1)+3(z+1)=0
$$

or $x-2 y+3 z=-6$
(c)(4pts) Find the parametric equations of the line of intersection of the planes from (a) and (b).

Solution. $\vec{v}=\vec{r}(1) \times \vec{r}^{\prime}(-1)=(1,2,3) \times(1,-2,3)=(12,0,-4)$ is the direction vector for the intersection line; we can cancel 3 and take $(3,0,-1)$. To find one point on the intersection, set $z=0$ and solve
$x+2 y=6$
$x-2 y=-6$
We get $x=0, y=3$. Hence a point on the intersection is $(0,3,0)$. The parametric equations are $x=3 t, y=3, z=-t$.
3. (12pts) Consider the surface defined by the equation $f(x, y)=x^{2} y+y^{3}+x$.
(a) $(6 \mathrm{pts})$ Find the tangent plane to the surface at the point $(-2,1,3)$.

Solution. $f_{x}(x, y)=2 x y+1 ; f_{y}(x, y)=x^{2}+3 y^{2}$;
at the point $(-2,1)$, we have $f_{x}=-3, f_{y}=7$. Hence, the equation is

$$
z-3=-3(x+2)+7(y-1)
$$

(b) (6pts) Find all second partial derivatives of $f(x, y)$.

Solution. $f_{x x}=2 y$
$f_{x y}=2 x$
$f_{y y}=6 y$
4. (14 pts) (a)(5pts) Find the velocity and position vectors of a particle that has the acceleration vector

$$
\vec{a}(t)=\langle 2, \cos t, \sin t\rangle,
$$

the initial velocity $\vec{v}(0)=\langle 0,0,-1\rangle$ and the initial position $\vec{r}(0)=\langle 1,1,0\rangle$.

Solution. Integrate $\vec{a}(t)$ to get the velocity.
$\vec{v}(t)=\left\langle 2 t+c_{1}, \sin t+c_{2},-\cos t+c_{3}\right\rangle$. Since $\vec{v}(0)=\langle 0,0,-1\rangle$, we get $\left\langle c_{1}, c_{2},-1+c_{3}\right\rangle=$ $\langle 0,0,-1\rangle$. Hence, $c_{1}=c_{2}=c_{3}=0$. We obtain

$$
\vec{v}(t)=\langle 2 t, \sin t,-\cos t\rangle .
$$

Integrating again, we get $\vec{r}(t)=\left\langle t^{2}+d_{1},-\cos t+d_{2},-\sin t+d_{3}\right\rangle$. Using the initial position $\vec{r}(0)=\langle 1,1,0\rangle$, we compute the constants $d_{1}=1, d_{2}=2, d_{3}=0$. Hence,

$$
\vec{r}(t)=\left\langle t^{2}+1,-\cos t+2,-\sin t\right\rangle .
$$

(b) (1pt) Find the position vector at the time $t=1$.

Solution. $\vec{r}(1)=\langle 2,-\cos 1+2,-\sin 1\rangle$.

Answer the following two questions in any order. Simplify your answers as much as possible.
(c) (4 pts$)$ Find the curvature at $t=1$.
(d) $(4 \mathrm{pts})$ Find the length of the projection of the acceleration vector at $t=1$ on the unit Normal vector at $t=1$.

Solution. The length of the projection of the acceleration vector on the unit Normal vector is the "normal component" of the acceleration, denoted a_{N} or $\left\|\vec{a}_{N}\right\|$. In particular, the answers to both c) and d) are SCALARS.

We shall use the formula

$$
a_{N}=\frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|}
$$

to solve d), and then

$$
\kappa=\frac{a_{N}}{\|\vec{v}\|^{2}}
$$

to quickly get c) from d).
(Remark: One can also go the opposite direction, and first find κ using the formula $\kappa=\frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|^{3}}$ and then compute $a_{N}=\kappa\|\vec{v}\|^{2}$.
Either way, we need to find the cross product $\vec{a} \times \vec{v}$, and then compute its magnitude. Plugging in $t=1$ into the formula we found in a), we get

$$
\vec{v}(1)=\langle 2, \sin 1,-\cos 1\rangle
$$

and

$$
\vec{a}(1)=\langle 2, \cos 1, \sin 1\rangle
$$

Hence,

$$
\begin{gathered}
\vec{v}(1) \times \vec{a}(1)=\left\langle\sin ^{2}(1)+\cos ^{2}(1),-2 \sin 1-2 \cos 1,2 \cos 1-2 \sin 1\right\rangle= \\
\langle 1,-2 \sin 1-2 \cos 1,2 \cos 1-2 \sin 1\rangle
\end{gathered}
$$

Thus,

$$
\|\vec{v}(1) \times \vec{a}(1)\|=\sqrt{1+(-2 \sin 1-2 \cos 1)^{2}+(2 \cos 1-2 \sin 1)^{2}}=
$$

(This may look rather cumbersome but don't get discouraged: a little bit of FOILing and simplifying reveals a nice answer:)

$$
\begin{gathered}
\sqrt{1+4 \sin ^{2}(1)+8 \sin 1 \cos 1+4 \cos ^{2}(1)+4 \cos ^{2}(1)-8 \sin 1 \cos 1+4 \sin ^{2}(1)}= \\
\sqrt{1+8 \sin ^{2}(1)+8 \cos ^{2}(1)}=\sqrt{9}=3
\end{gathered}
$$

Next, we find $\|\vec{v}(1)\|=\sqrt{2^{2}+\sin ^{2}(1)+\cos ^{2}(1)}=\sqrt{5}$. Finally,

$$
a_{N}=\frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|}=\frac{3}{\sqrt{5}}
$$

and

$$
\kappa=\frac{a_{N}}{\|\vec{v}\|^{2}}=\frac{3}{5 \sqrt{5}}
$$

5. (3pts) (Bonus, full credit only). Show that if a particle moves with the constant speed, then the velocity and acceleration vectors are orthogonal.
