\qquad
\qquad

Practice problems for the Final Math 126, Section A
 Material covered after Midterm II

1. Find and classify critical points of the function
(a) $f(x, y)=x y^{2}-2 x^{2}-y^{2}$

Solution.

$f_{x}=y^{2}-4 x=0$
$f_{y}=2 x y-2 y=0$
Solving, we get 3 critical points: $(0,0),(1,2),(1,-2)$.
To classify the critical points we have to use the Second Derivative test. We compute

$$
f_{x x}=-4 \quad f_{y y}=2 x-2 \quad f_{x y}=2 y
$$

Hence, $D=f_{x x} f_{y y}-f_{x y}^{2}=-4(2 x-2)-4 y^{2}=8-8 x-8 y^{2}$.
At the critical point $(0,0), D=8, f_{x x}=-4$. Hence $(0,0)$ is a local maximum.
At the critical points $(1,2),(1,-2), D=-32$. Hence, $(1,2),(1,-2)$ are saddle points.
(b) $f(x, y)=3 x y-x^{2} y-x y^{2}$

Solution.

$f_{x}=3 y-2 x y-y^{2}=0$
$f_{y}=3 x-x^{2}-2 x y=0$
Subtracting, we get
$3(y-x)=y^{2}-x^{2} \quad \Rightarrow$
$3(y-x)=(y-x)(y+x) \quad \Rightarrow$
$y=x$ or $y+x=3$
If $y=x$, then plugging into the first equation we get $y=0$ or $y=1$. Hence we obtain two critical points in this case: $(0,0)$ and $(1,1)$
If $y+x=3$, the plugging $x=3-y$ into the first equation, we get $y=0$ and $y=3$. Hence, we obtain two new critical points: $(3,0)$ and $(0,3)$.
To classify the critical points we have to use the Second Derivative test. We compute

$$
f_{x x}=-2 y, \quad f_{y y}=-2 x, \quad f_{x y}=3-2 x-2 y
$$

Hence, $D=f_{x x} f_{y y}-f_{x y}^{2}=4 x y-(3-2 x-2 y)^{2}$.
At the critical point $(0,0), D=-9$. Hence $(0,0)$ is a saddle point.
At the critical point $(1,1), D=3, f_{x x}=-2$. Hence, $(1,1)$ is a local maximum.
At the critical point $(3,0), D=-9$. Hence, $(3,0)$ is a saddle. Since the equation is symmetric in x and y, we conclude that $(0,3)$ is also a saddle.
2. Find the points on the surface $x y^{2} z^{3}=1$ which are closest to the origin.

Solution. We have to minimize the function $f=x^{2}+y^{2}+z^{2}$ where (x, y, z) are points on the surface given by the equation $x y^{2} z^{3}=1$. Hence, we have to solve

$$
\begin{aligned}
& f_{x}=2 x+2 z z_{x}=0 \\
& f_{y}=2 y+2 z z_{y}=0
\end{aligned}
$$

We can find z_{x}, z_{y} by implicitly differentiating the equation of the surface $x y^{2} z^{3}=1$. Applying $\frac{\partial}{\partial x}$ and using the product rule, we get

$$
\begin{equation*}
y^{2} z^{3}+3 x y^{2} z^{2} z_{x}=0 \tag{*}
\end{equation*}
$$

Now applying $\frac{\partial}{\partial y}$ and using the product rule again, we get

$$
\begin{equation*}
2 x y z^{3}+3 x y^{2} z^{2} z_{y}=0 \tag{**}
\end{equation*}
$$

None of the x, y, z can be zero since (x, y, z) is a point on the surface $x y^{2} z^{3}=1$. Solving the equation $\left(^{*}\right.$) for z_{x} and the equation $\left({ }^{* *}\right)$ for z_{y}, we get

$$
z_{x}=-\frac{z}{3 x}, \quad z_{y}=-\frac{2 z}{3 y}
$$

Now plug z_{x}, z_{y} into equations for f_{x}, f_{y}. We get

$$
x+z\left(-\frac{z}{3 x}\right)=0, \quad y+z\left(-\frac{2 z}{3 y}\right)=0
$$

Hence,

$$
3 x^{2}=z^{2}, \quad 3 y^{2}=2 z^{2}
$$

Finally, plugging $x= \pm \frac{z}{\sqrt{3}}, y^{2}=\frac{2 z^{2}}{3}$ into the equaion of the surface, we get

$$
\pm \frac{z}{\sqrt{3}} \frac{2 z^{2}}{3} z^{3}= \pm \frac{2 z^{6}}{3^{3 / 2}}=1
$$

The "-" sign is not possible, and solving for z we get $z= \pm 3^{\frac{1}{4}} 2^{-\frac{1}{6}}= \pm \frac{\sqrt[4]{3}}{\sqrt[6]{2}}$. Hence, the closest points are

$$
\left(3^{-\frac{1}{4}} 2^{-\frac{1}{6}}, \pm 3^{-\frac{1}{4}} 2^{\frac{1}{3}}, 3^{\frac{1}{4}} 2^{-\frac{1}{6}}\right),\left(-3^{-\frac{1}{4}} 2^{-\frac{1}{6}}, \pm 3^{-\frac{1}{4}} 2^{\frac{1}{3}},-3^{\frac{1}{4}} 2^{-\frac{1}{6}}\right)
$$

3. (a) Reverse the order of integration and then evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

Solution. The integral in reversed order is

$$
\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x
$$

(You need to draw a picture of the region D given by $\{(x, y): 0 \leq y \leq 1, \sqrt{y} \leq x \leq 1\}$ to find, integration limits in the reversed order)
Now, integrate
$\int_{0}^{1} \int_{0}^{x^{2}} \sqrt{x^{3}+1} d y d x=\left.\int_{0}^{1}\left(y \sqrt{x^{3}+1}\right)\right|_{0} ^{x^{2}} d x=\int_{0}^{1} x^{2} \sqrt{x^{3}+1} d x=\left.\frac{2\left(x^{3}+1\right)^{\frac{3}{2}}}{9}\right|_{0} ^{1}=\frac{4 \sqrt{2}}{9}-\frac{2}{9}$
(b) Evaluate the following integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} x \sin \left(\pi y^{2}\right) d y d x
$$

Solution. We reverse the order of integration first.

$$
\int_{0}^{1} \int_{0}^{\sqrt{y}} x \sin \left(\pi y^{2}\right) d x d y
$$

and then evaluate
$\int_{0}^{1} \int_{0}^{\sqrt{y}} x \sin \left(\pi y^{2}\right) d x d y=\int_{0}^{1}\left(\left.\frac{x^{2}}{2} \sin \left(\pi y^{2}\right)\right|_{0} ^{\sqrt{y}}\right) d y=\frac{1}{2} \int_{0}^{1} y \sin \left(\pi y^{2}\right) d y=-\left.\frac{\cos \left(\pi y^{2}\right)}{4 \pi}\right|_{0} ^{1}=\frac{1}{2 \pi}$
4. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y=z$, $x=0, z=0$ in the first octant.
Do this problem in two ways: using rectangular coordinates, and then using polar coordinates.
Solution. The region here is $1 / 4$ of the circle $x^{2}+y^{2}=1$, the quarter in the first quadrant. The function is $z=y$. Hence, we need to evaluate

$$
\iint_{D} y d x d y
$$

I. Cartesian coordinates.

$$
\iint_{D} y d x d y=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y d y d x=\left.\int_{0}^{1} \frac{y^{2}}{2}\right|_{0} ^{\sqrt{1-x^{2}}} d x=\frac{1}{2} \int_{0}^{1}\left(1-x^{2}\right) d x=\frac{1}{3}
$$

II. Polar coordinates.

$$
\iint_{D} y d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1}(r \sin \theta) r d r d \theta=\int_{0}^{\frac{\pi}{2}} \int_{0}^{1}(\sin \theta) r^{2} d r d \theta=\left(\int_{0}^{\frac{\pi}{2}} \sin \theta d \theta\right)\left(\int_{0}^{1} r^{2} d r\right)=\frac{1}{3}
$$

5. Compute the volume of the solid bounded by the paraboloids $z=x^{2}+y^{2}$ from below and $z=\frac{x^{2}}{2}+\frac{y^{2}}{2}+1$ from above.
Solution. First, find the intersection of two paraboloids:
$x^{2}+y^{2}=\frac{x^{2}}{2}+\frac{y^{2}}{2}+1$
$x^{2}+y^{2}=2$
This is the equation of the projection of the intersection onto the $x y$-plane. The solid in questions lies above this circle, so we take

$$
D=\left\{(x, y): x^{2}+y^{2}=2\right\}
$$

The integral computing the volume of the solid is

$$
V=\iint_{D}\left(\frac{x^{2}}{2}+\frac{y^{2}}{2}+1-x^{2}-y^{2}\right) d x d y=\iint_{D}\left(1-\frac{x^{2}}{2}-\frac{y^{2}}{2}\right) d x d y
$$

Changing to polar coordinates, we obtain

$$
\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(1-\frac{r^{2}}{2}\right) r d r d \theta=\pi
$$

6. Evaluate the double integral

$$
\iint_{D}\left(x^{2}+x+y^{2}\right) d A
$$

where D is the region

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 4 \text { and } \mathrm{y} \geq \mathrm{x}\right\}
$$

Solution. In polar coordinates

$$
D=\left\{(r, \theta): r \leq 2 \text { and } \frac{\pi}{4} \leq \theta \leq \frac{5 \pi}{4}\right\}
$$

Hence, the integral in polar coordinates is

$$
\begin{gathered}
\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \int_{0}^{2}\left(r^{2}+r \cos \theta\right) r d r d \theta=\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \int_{0}^{2}\left(r^{3}+r^{2} \cos \theta\right) d r d \theta=\left.\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(\frac{r^{4}}{4}+\frac{r^{3}}{3} \cos \theta\right)\right|_{0} ^{2} d \theta= \\
\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(4+\frac{8}{3} \cos \theta\right) d \theta=4 \theta+\left.\frac{8}{3} \sin \theta\right|_{\frac{\pi}{4}} ^{\frac{5 \pi}{4}}=4 \pi-\frac{8 \sqrt{2}}{3}
\end{gathered}
$$

