Sample MIDTERM II, version 2.
Last year's midterm for Spring MATH 126 C, D

Scientific, but not graphing calculators are OK.
You may use one 8.5 by 11 sheet of handwritten notes.

1. Find the slope of the tangent line to the polar curve

$$
r=\frac{1}{\theta}, \theta>0
$$

at the point where it intersects the cartesian curve

$$
x^{2}+y^{2}=\frac{1}{9} .
$$

2. At what point(s) is the tangent line to the curve

$$
x=t^{3}-3 t, y=t^{2}+2 t
$$

parallel to the line with parametric equations

$$
x=3 s+5, y=s-6 ?
$$

3. For any $m>0$, the helix determined by the position function

$$
\vec{r}(t)=\langle\cos t, \sin t, m t\rangle
$$

has constant curvature that depends on $m$. Find the value of $m$ such that the curvature at any point on the curve is $\frac{1}{3}$.
4. A particle is moving so that its position is given by the vector function

$$
\vec{r}(t)=\left\langle t^{2}, t, 5 t\right\rangle
$$

Find the tangent and normal components of the particle's acceleration vector.
5. Reparametrize the curve

$$
\vec{r}(t)=\langle 5 t-1,2 t, 3 t+2\rangle
$$

with respect to arc length measured from the point where $t=0$ in the direction of increasing $t$.
6. Let $f(x, y)=x^{2} y+x \sin y-\ln \left(x-y^{2}\right)$.
(a) Find $f_{y}(x, y)$.
(b) Find $f_{x y}(x, y)$.

