MIDTERM I ANSWERS
Math 126, Section C
October 18, 2006

NOTE. Most problems had multiple solutions. Below we give only one possible solution for each problem. It is perfectly acceptable if you had a different (but correct!) solution.

1. Find the Taylor series for a given function $f(x)$. Give your answer using summation notation.
(a) (7pts.) $f(x)=e^{x}$, based at $a=2$

Answer. $e^{x}=\sum_{0}^{\infty} \frac{e^{2}}{n!}(x-2)^{n}$
(b) (8pts.) $f(x)=\ln (1-2 x)$, based at $a=0$.

Answer. $f^{\prime}(x)=-\frac{2}{1-2 x}=-2 \sum_{0}^{\infty} 2^{n} x^{n}$, hence,
$f(x)=-\sum_{0}^{\infty} \frac{2^{n+1}}{n+1} x^{n+1}=-\sum_{1}^{\infty} \frac{2^{n}}{n} x^{n}$
2. (15pts.) Let $f(x)=\frac{1}{(1-x)(1+x)}$.
(a) (7pts.) Find the Taylor series for $f(x)$ based at $a=0$, and the interval of convergence. Give your answer using the summation notation.
Answer. $f(x)=\frac{1}{(1-x)(1+x)}=\frac{1}{1-x^{2}}=\sum_{0}^{\infty} x^{2 n}$. The interval of convergence is $(-1,1)$.
(b) (4pts.) Find the $6^{\text {th }}$ Taylor polynomial of $f(x)$ based at $a=0$.

Answer. $T_{6}(x)=1+x^{2}+x^{4}+x^{6}$
(c) (4pts.) Find $f^{(6)}(0)$.

Answer. $f^{(6)}(0)=6$!
3. Let $f(x)=2 \cos ^{2} x-1$.
(a) (6pts.) Find the quadratic approximation $T_{2}(x)$ of $f(x)$ based at $a=0$

Answer. Using the double angle formula, we get $f(x)=\cos (2 x)$. Hence, $f(x)=$ $\sum_{0}^{\infty}(-1)^{n} \frac{2^{2 n} x^{2 n}}{(2 n)!}$. Cutting off the tail, we obtain

$$
T_{2}(x)=1-2 x^{2}
$$

(b) (3pts.) Use the quadratic approximation to estimate $f\left(\frac{\pi}{8}\right)$.

Answer.

$$
T_{2}\left(\frac{\pi}{8}\right)=1-2\left(\frac{\pi}{8}\right)^{2}=1-\frac{\pi^{2}}{32}
$$

(c) (6pts.) Using Taylor's inequality, find the error bound for the estimate you computed in (b).

Answer. $\left|f^{(3)}(x)\right|=|8 \sin (2 x)| \leq 8$. Hence, using Taylor's inequality, we get

$$
\left|f\left(\frac{\pi}{8}\right)-T_{2}\left(\frac{\pi}{8}\right)\right| \leq \frac{8}{6}\left(\frac{\pi}{8}\right)^{3}=\frac{\pi^{3}}{6 * 64} \sim \frac{9}{128}
$$

4. (15pts.) Let $A=(3,0,0), B=(0,4,0)$, and $C=(0,0,1)$.
(a) (8pts.) Find the area of the triangle $A B C$

Answer. 13/2
(b) (7pts.) Let $C H$ be the height of the triangle from the vertex C to the base $A B$. Find the coordinates of the point H.
Answer. Let $\vec{u}=\overrightarrow{A B}=(-3,4,0), \vec{v}=\overrightarrow{A C}=(-3,0,1)$. Then
$\overrightarrow{A H}=\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^{2}} \vec{u}=\frac{(-3,4,0) \cdot(-3,0,1)}{3^{2}+4^{2}}(-3,4,0)=\frac{9}{25}(-3,4,0)=\left(-\frac{27}{25}, \frac{36}{25}, 0\right)$
Let O denote the origin. Then the coordinates of H are the same as of the vector $\overrightarrow{O H}$. We have

$$
\overrightarrow{O H}=\overrightarrow{O A}+\overrightarrow{A H}=(3,0,0)+\left(-\frac{27}{25}, \frac{36}{25}, 0\right)=\left(\frac{48}{25}, \frac{36}{25}, 0\right)=(1.92,1.44,0)
$$

