$\qquad$
$\qquad$

# Practice problems for the Final <br> Math 126, Sections C, D <br> Material covered after Midterm II 

1. Find and classify critical points of the function
(a) $f(x, y)=x y^{2}-2 x^{2}-y^{2}$
(b) $f(x, y)=3 x y-x^{2} y-x y^{2}$
2. Find the points on the surface $x y^{2} z^{3}=1$ which are closest to the origin.
3. (a) Reverse the order of integration and then evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

(b) Evaluate the following integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} x \sin \left(\pi y^{2}\right) d y d x
$$

4. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y=z$, $x=0, z=0$ in the first octant.
Do this problem in two ways: using rectangular coordinates, and then using polar coordinates.
5. Compute the volume of the solid bounded by the paraboloids $z=x^{2}+y^{2}$ from below and $z=\frac{x^{2}}{2}+\frac{y^{2}}{2}+1$ from above.
6. Evaluate the double integral

$$
\iint_{D}\left(x^{2}+x+y^{2}\right) d A
$$

where $D$ is the region

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 4 \text { and } \mathrm{y} \geq \mathrm{x}\right\}
$$

