## Solutions

1. (a) $[1 \mathrm{pt}]$ Find linear approximation to the function $f(x)=\arctan x$ at the point $a=1$.

Recall that the linear approximation to a function $f$ at a point $a$ is given by $y=f(a)+f^{\prime}(a)(x-a)$. Here $f^{\prime}(x)=\frac{1}{1+x^{2}}$ so $f^{\prime}(1)=\frac{1}{2}$ and $f(1)=\arctan 1=\frac{\pi}{4}$. The linear approximation is $y=\frac{\pi}{4}+\frac{1}{2}(x-1)$.
(b) $[1 \mathrm{pt}]$ Estimate $\arctan (1.1)$. Leave you answer in exact form.

We use the linear approximation at the point $a=1$ as above: we plug in $x=1.1$ and the resulting value of $y$ should be approximately equal to $\arctan 1.1$. This is $\frac{\pi}{4}+\frac{1}{2}(1.1-1)=\frac{\pi}{4}+\frac{1}{2}(0.1)=\frac{\pi}{4}+\frac{1}{20}$.
2. Evaluate the following integrals
(a) $[2 \mathrm{pt}] \int \frac{x d x}{1-x^{2}}$

First let's try the substitution $u=x^{2}, d u=2 x d x$.
$\int \frac{x d x}{1-x^{2}}=\int \frac{d u}{2(1-u)}$.
Now let's substitute $v=1-u, d v=-d u$.
$\int \frac{d u}{2(1-u)}=\frac{-1}{2} \int \frac{d v}{v}=\frac{-1}{2} \ln v+C=\frac{-1}{2} \ln (1-u)+C=\frac{-1}{2} \ln \left(1-x^{2}\right)+C$, where $C$ is an arbitrary constant of integration. We could simplify this further if we wished.
(b) $[2 \mathrm{pt}] \int_{0}^{\frac{3 \pi}{2}} \sin x \cos x d x$

We use the substitution $u=\sin x, d u=\cos x d x$.
$\int_{0}^{\frac{3 \pi}{2}} \sin x \cos x d x=\int_{0}^{-1} u d u=\frac{1}{2}(1-0)=\frac{1}{2}$.
(c) $[2 \mathrm{pt}] \int x^{2} e^{x} d x$

We use integration by parts. Recall that $\int u d v=u v-\int v d u$. First we take $u=x^{2}, d v=e^{x} d x$ so, differentiating and integrating, $d u=2 x d x, v=e^{x}$. Thus, $\int x^{2} e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x$.

Now we use integration by parts again on this. Here we take $u=x, d v=e^{x} d x$ so $d u=d x$ and $v=e^{x}$. $\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C$, where $C$ is an arbitrary constant of integration.

Putting this all together, $\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C$.
(d)[2 Bonus points!] $\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}$

We shall simplify our denominator by completing the square. Observe that $x^{2}+2 x+2=\left(x^{2}+2 x+1\right)+1=$ $(x+1)^{2}+1$. Now substitute $u=x+1$.
$\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}=\int_{-1}^{0} \frac{d x}{(x+1)^{2}+1}=\int_{0}^{1} \frac{d u}{u^{2}+1}=\arctan 1-\arctan 0=\frac{\pi}{4}$.

