No books, notes or graphing calcuators. Turn off your cell phones.
(5) 1. Determine whether the lines

$$
L_{1}: \frac{x-1}{2}=\frac{y-3}{2}=\frac{z-2}{-1} \quad \text { and } \quad L_{2}: \frac{x-2}{2}=\frac{y-6}{-1}=\frac{z+2}{3}
$$

are parallel, skew or intersecting. If they intersect, find the point of intersection.
Solution. Directional vectors of these lines are $\mathbf{v}_{1}=(2,2,-1)$ and $\mathbf{v}_{2}=(2,-1,3)$. Since they are not parallel, lines L_{1} and L_{2} are not parallel as well.

Suppose L_{1} and L_{2} are intersecting at some point (x, y, z). From the equation of L_{1} we have $y=x+2$ and $z=\frac{5-x}{2}$. From the equation of L_{2} we have $y=\frac{14-x}{2}$ and $z=\frac{3 x-10}{2}$. At the point of intersection we must have $y=x+2=\frac{14-x}{2}$ and $z=\frac{5-x}{2}=\frac{3 x-10}{2}$. Solving the first of these equations we get $x=\frac{10}{3}$, while the solution of the second one is $x=\frac{15}{4}$. Therefore, lines L_{1} and L_{2} do not have a point in common, thus they are skew.
(5) 2. Find an equation of the plane through the origin, and the points $(2,-4,6)$ and $(5,1,3)$.

Solution. Since this plane contains points $(0,0,0),(2,-4,6)$ and $(5,1,3)$, it is parallel to vectors $\mathbf{a}=(2,-4,6)$ and $\mathbf{b}=(5,1,3)$. Then a normal vector is given by the cross-product of these:

$$
\mathbf{n}=\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -4 & 6 \\
5 & 1 & 3
\end{array}\right|=-18 \mathbf{i}+24 \mathbf{j}+22 \mathbf{k}
$$

By taking the origin as a point on the plain, we get the equation $-18 x+24 y+22 z=0$.

