No books, notes or graphing calcuators. Please turn off your cell phones. Show ALL your work.
(10) 1. A rectangular box without a lid is to be made from $100 \mathrm{~m}^{2}$ of cardboard.
(a) What is the maximal volume of such a box?

W e give two solutions. The first uses implicit differentiation, and the second solves explicitly for one of the variables.

Solution I. Let x be the length, z be the width and y be the height of the box (note the unusual choice of variables). Since we are looking for the maximal volume, we may assume $x, y, z>0$
The volume is

$$
V=x y z
$$

and the total surface area is

$$
\begin{equation*}
100=x z+2 x y+2 z y \tag{*}
\end{equation*}
$$

We treat $z=z(x, y)$ as a function of x, y without solving for it and use implicit differentiation. The volume $V=x y z$ becomes a function of x, y as well. To maximize the volume V, we have to find the critical points. For this, we have to solve $V_{x}=V_{y}=0$.
Find the partial derivatives of V and set them equal to 0

$$
V_{x}=y z+x y z_{x}=0, \quad V_{y}=x z+x y z_{y}=0
$$

Simplify

$$
\begin{aligned}
& z+x z_{x}=0 \\
& z+y z_{y}=0
\end{aligned}
$$

Subtract

$$
\begin{equation*}
x z_{x}=y z_{y} \tag{**}
\end{equation*}
$$

Next we differentiate the total surface area.
Take $\frac{\delta}{\delta x}$ of (*)

$$
0=z+x z_{x}+2 y+2 y z_{x}
$$

Solve for z_{x}

$$
z_{x}=-\frac{z+2 y}{x+2 y}
$$

Now take $\frac{\delta}{\delta y}$ of $(*)$

$$
0=x z_{y}+2 x+2 z+2 y z_{y}
$$

Solve for z_{y}

$$
z_{y}=-\frac{2 x+2 z}{x+2 y}
$$

Plug in the formulas for z_{x}, z_{y} into $\left({ }^{* *}\right)$

$$
x \frac{z+2 y}{x+2 y}=y \frac{2 x+2 z}{x+2 y}
$$

Simplify

$$
x z+2 x y=2 x y+2 z y
$$

Simplify further

$$
x=2 y
$$

Since x and z are "symmetric" variables in the problem, we must also have

$$
z=2 y
$$

Plug $x=z=2 y$ into the equation $100=x z+2 y x+2 y z$. We get $100=4 y^{2}+4 y^{2}+4 y^{2}$. Hence, $y=\sqrt{\frac{100}{12}}=\frac{5}{\sqrt{3}}$. The volume $V=x y z=4 y^{3}=\frac{500}{3 \sqrt{3}}$.

Solution II. Let x and y be the dimensions of the bottom of the box and let z be its height. Then the volume of the box is $V(x, y, z)=x y z$ and we want to maximize this function. The surface area of the box is $x y$ for the bottom plus $2 x z$ and $2 y z$ for the sides. Thus we must have $100=x y+2 x z+2 y z$. Solving this relation for z gives us $z=\frac{100-x y}{2 x+2 y}$. If we plug it into the formula for V, we obtain $V(x, y)=\frac{100 x y-x^{2} y^{2}}{2 x+2 y}$. In order to find critical points of this function, we compute its partial derivatives:

$$
\begin{aligned}
V_{x} & =\frac{\left(100 y-2 x y^{2}\right)(2 x+2 y)-\left(100 x y-x^{2} y^{2}\right) 2}{(2 x+2 y)^{2}}=\frac{\left(100 y-2 x y^{2}\right)(x+y)-\left(100 x y-x^{2} y^{2}\right)}{2(x+y)^{2}} \\
& =\frac{100 x y+100 y^{2}-2 x^{2} y^{2}-2 x y^{3}-100 x y+x^{2} y^{2}}{2(x+y)^{2}}=\frac{100 y^{2}-x^{2} y^{2}-2 x y^{3}}{2(x+y)^{2}} \\
& =y^{2} \frac{100-x^{2}-2 x y}{2(x+y)^{2}}
\end{aligned}
$$

By symmetry,

$$
V_{y}=x^{2} \frac{100-y^{2}-2 x y}{2(x+y)^{2}}
$$

Since we are looking for a point of maximum, we may assume that $x \neq 0$ and $y \neq 0$. Then $V_{x}=V_{y}=0$ is equivalent to

$$
100-x^{2}-2 x y=0=100-y^{2}-2 x y
$$

We see that $x^{2}=y^{2}$, thus $x=y$, since both must be positive. Then $100-x^{2}-2 x^{2}=100-3 x^{2}=0$ and $x=\sqrt{\frac{100}{3}}$. Since we have only one critical point and we know that there is the largest box, this point must be the point of maximum and when $x=y=\sqrt{\frac{100}{3}}$, we have

$$
V=\frac{100 x y-x^{2} y^{2}}{2 x+2 y}=\frac{100 x^{2}-x^{4}}{4 x}=x \frac{100-x^{2}}{4}=\sqrt{\frac{100}{3}}\left(25-\frac{25}{3}\right)=\frac{10}{\sqrt{3}} \frac{50}{3}=\frac{500}{3 \sqrt{3}} \approx 96
$$

(b) Assume that the box must be at least 10 m tall. What is the maximal volume the box in this case?

Solution. At the critical point found above we have $z=\frac{100-x y}{2 x+2 y}=\frac{100-x^{2}}{4 x}=\frac{5}{\sqrt{3}}<10$. Thus there are no critical points inside the region $z \geqslant 10$ and the maximum value is attained on the boundary, i.e. we must have $z=10$. Then we need to maximize $V(x, y)=10 x y$ with the condition $100=x y+20 x+20 y$. Solving this equation for y gives $y=\frac{100-20 x}{x+20}$. Thus we need to maximize $V(x)=100 \frac{10 x-2 x^{2}}{x+20}$. We compute

$$
V^{\prime}(x)=100 \frac{(10-4 x)(x+20)-\left(10 x-2 x^{2}\right)}{(x+20)^{2}}=100 \frac{10 x-4 x^{2}+200-80 x-10 x+2 x^{2}}{(x+20)^{2}}=100 \frac{200-80 x-2 x^{2}}{(x+20)^{2}}
$$

so $V^{\prime}(x)=0$ if $100-40 x-x^{2}=0$, or $x^{2}+40 x-100=0$. The positive solution of this equation is $x=$ $\frac{-40+\sqrt{1600+400}}{2}=-20+10 \sqrt{5}$. By symmetry, if we were looking for the critical value of y, we would get the same number. Therefore, the maximum volume is $V=10(10 \sqrt{5}-20)^{2}=10(500+400-400 \sqrt{5})=1000(9-4 \sqrt{5}) \approx 56$.

