[1] Differentiation.

(a) $f'(x) = 3 \sec^3 x \tan x = 3 \sin x \cos^{-4} x$; the domain is the set of all real numbers x such that $x \neq \frac{(2n+1)\pi}{2}$ for $n = 0, \pm 1, \pm 2, \dots$

(b)
$$\frac{d^2y}{dt^2} = \frac{-2t}{(1+t^2)^2}.$$

(c) $f'(x) = -4 \sin x \cos^3 x$ Note: there is an easy way and a hard way to get to this answer!

(d)
$$\frac{dy}{dx} = 3x^2\cos(5^{x^2}) - 2(\ln 5)x^45^{x^2}\sin(5^{x^2})$$

- (e) f'(0) is not defined; f'(1) = 1, $f'(e) = 2e^e$. Note: Give answers exactly (in terms of e, π , $\sqrt{2}$, etc.), not decimal approximations.
- (f) $\frac{du}{dv} = \frac{b \sec^2 bv}{\tan bv} = b \sec(bv) \csc(bv)$ (either form, or any other equivalent form, is correct). What property of logarithms could have let you predict that *a* does not appear in the answer?

[2] $\sqrt{0.9} \approx 0.95$ and $\sqrt{0.99} \approx 0.995$; these are above the actual values, because the curve is concave down, so the tangent line is above the curve.

[3] Integration.

(a)
$$\frac{\pi}{24}$$

(b) If p = 0, then the value of the integral is 1. For all other values of p, the value is $\frac{2^{1-p}-1}{1-p}$.

(c)
$$-3^{-2x}\left(\frac{x}{2\ln 3} + \frac{1}{(2\ln 3)^2}\right) + C$$