[1] Differentiation.
(a) $f^{\prime}(x)=3 \sec ^{3} x \tan x=3 \sin x \cos ^{-4} x$; the domain is the set of all real numbers x such that $x \neq \frac{(2 n+1) \pi}{2}$ for $n=0, \pm 1, \pm 2, \ldots$
(b) $\frac{d^{2} y}{d t^{2}}=\frac{-2 t}{\left(1+t^{2}\right)^{2}}$.
(c) $f^{\prime}(x)=-4 \sin x \cos ^{3} x$ Note: there is an easy way and a hard way to get to this answer!
(d) $\frac{d y}{d x}=3 x^{2} \cos \left(5 x^{x^{2}}\right)-2(\ln 5) x^{4} 5^{x^{2}} \sin \left(55^{x^{2}}\right)$
(e) $f^{\prime}(0)$ is not defined; $f^{\prime}(1)=1, f^{\prime}(e)=2 e^{e}$. Note: Give answers exactly (in terms of e, $\pi, \sqrt{2}$, etc.), not decimal approximations.
(f) $\frac{d u}{d v}=\frac{b \sec ^{2} b v}{\tan b v}=b \sec (b v) \csc (b v)$ (either form, or any other equivalent form, is correct). What property of logarithms could have let you predict that a does not appear in the answer?
[2] $\sqrt{0.9} \approx 0.95$ and $\sqrt{0.99} \approx 0.995$; these are above the actual values, because the curve is concave down, so the tangent line is above the curve.
[3] Integration.
(a) $\frac{\pi}{24}$
(b) If $p=0$, then the value of the integral is 1 .

For all other valures of p, the value is $\frac{2^{1-p}-1}{1-p}$.
(c) $-3^{-2 x}\left(\frac{x}{2 \ln 3}+\frac{1}{(2 \ln 3)^{2}}\right)+C$

