Sample MIDTERM II, version 2.

Last year's midterm for Spring MATH 126 C, D

Scientific, but not graphing calculators are OK.
You may use one 8.5 by 11 sheet of handwritten notes.

1. Find the slope of the tangent line to the polar curve

$$
r=\frac{1}{\theta}, \theta>0
$$

at the point where it intersects the cartesian curve

$$
x^{2}+y^{2}=\frac{1}{9} .
$$

Answer. To find the point of intersection, we solve $x^{2}+y^{2}=r^{2}=1 / 9$
$r=1 / 3$
$1 / \theta=1 / 3$
$\theta=3$
Using the polar-Cartesian conversion formulas, we get $x=r \cos \theta=\frac{1}{3} \cos (3), y=r \cos \theta=$ $\frac{1}{3} \sin (3)$
Hence, the point is $\left(\frac{1}{3} \cos (3), \frac{1}{3} \sin (3)\right)$.
For the tangent line, we need to find the slope $d y / d x$ at the point $\theta=3$. We have
$\frac{d y}{d x}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\frac{d}{d \theta}(\sin (\theta) / \theta)}{\frac{d}{d \theta}(\cos (\theta) / \theta)}=\frac{\theta \cos (\theta)-\sin (\theta)}{-\theta \sin (\theta)-\cos (\theta)}=\frac{\sin (3)-3 \cos (3)}{3 \sin (3)+\cos (3)}=\frac{\tan (3)-3}{3 \tan (3)+1}$.
Tangent line: $y-\frac{\sin (3)}{3}=\frac{\tan (3)-3}{3 \tan (3)+1}\left(x-\frac{\cos (3)}{3}\right)$
2. At what point(s) is the tangent line to the curve

$$
x=t^{3}-3 t, y=t^{2}+2 t
$$

parallel to the line with parametric equations

$$
x=3 s+5, y=s-6 ?
$$

Answer. The direction of the tangent line is the tangent vector $\left(3 t^{2}-3,2 t+2\right)$. The direction of the line is $(3,1)$. Hence we have to find t such that $\left(3 t^{2}-3,2 t+2\right)$ is parallel to $(3,1)$. Hence, we have to solve

$$
\left(3 t^{2}-3,2 t-2\right)=a(3,1)
$$

for some number a. We get two equations:
$3 t^{2}-3=3 a$
$2 t+2=a$
Solving for t and a, we obtain $t=3, a=8$. Plugging in $t=3$ into the parametric equations, we obtain that the point is $(18,15)$.
3. For any $m>0$, the helix determined by the position function

$$
\vec{r}(t)=\langle\cos t, \sin t, m t\rangle
$$

has constant curvature that depends on m. Find the value of m such that the curvature at any point on the curve is $\frac{1}{3}$.

Answer. The curvature is $\kappa=\frac{1}{m^{2}+1}$. Solving $\frac{1}{m^{2}+1}=1 / 3$, we get $m=\sqrt{2}$.
4. A particle is moving so that its position is given by the vector function

$$
\vec{r}(t)=\left\langle t^{2}, t, 5 t\right\rangle
$$

Find the tangent and normal components of the particle's acceleration vector.
Answer. $\vec{r}^{\prime}=(2 t, 1,5), v=\left\|\overrightarrow{r^{\prime}}\right\|=\sqrt{26+4 t^{2}}$
$T=\frac{1}{\sqrt{26+4 t^{2}}}(2 t, 1,5)$
$\vec{a}=\vec{r}^{\prime \prime}+(2,0,0)$
$\vec{a}=\vec{r}^{\prime \prime}=(2,0,0)$.
The tangential component of \vec{a} is the length of the projection of \vec{a} onto T. Hence,

$$
a_{T}=\frac{\vec{a} \cdot T}{\|T\|}=\vec{a} \cdot T=(2,0,0) \cdot \frac{1}{\sqrt{26+4 t^{2}}}(2 t, 1,5)=\frac{\mathbf{4 t}}{\sqrt{\mathbf{2 6}+\mathbf{4 \mathbf { t } ^ { 2 }}}}
$$

We can compute a_{N} in at least two different ways.
I. Use the formula $a_{N}=v^{2} \kappa$.

By the formula (10) in 13.3, $\kappa=\frac{\left\|r^{\prime} \times r^{\prime \prime}\right\|}{\left\|r^{\prime}\right\| \|^{3}}=\frac{\|(2 t, 1,5) \times(2,0,0)\|}{\left(26+4 t^{2}\right)^{3 / 2}}=\frac{\|(0,10,-2)\|}{\left(26+4 t^{2}\right)^{3 / 2}}=\frac{\sqrt{104}}{\left(26+4 t^{2}\right)^{3 / 2}}$
Hence, $a_{N}=v^{2} \kappa=\left(26+4 t^{2}\right) \frac{\sqrt{104}}{\left(26+4 t^{2}\right)^{3 / 2}}=\sqrt{\frac{52}{13+2 t^{2}}}$
II. Another way is to notice that the decomposition

$$
\vec{a}=a_{T} T+a_{N} N
$$

implies that

$$
a_{N} N=\vec{a}-a_{T} T
$$

Since N is a unit vector, we get

$$
a_{N}=\left\|\vec{a}-a_{T} T\right\|
$$

And we already know a_{T} so we can just plug it in! We now compute

$$
\begin{aligned}
& a_{N}=\left\|\vec{a}-a_{T} T\right\|=\left\|(2,0,0)-\frac{4 t}{\sqrt{26+4 t^{2}}} \frac{(2 t, 1,5)}{\sqrt{26+4 t^{2}}}\right\|=\left\|(2,0,0)-\frac{\left(8 t^{2}, 4 t, 20 t\right)}{26+4 t^{2}}\right\|= \\
& \left\|\left(2-\frac{8 t^{2}}{26+4 t^{2}},-\frac{4 t}{26+4 t^{2}},-\frac{20 t}{26+4 t^{2}}\right)\right\|=\left\|\left(\frac{52}{26+4 t^{2}},-\frac{4 t}{26+4 t^{2}},-\frac{20 t}{26+t^{2}}\right)\right\|= \\
& \frac{4}{26+4 t^{2}}\|(13,-t,-5 t)\|=\frac{2}{13+2 t^{2}} \sqrt{13^{2}+t^{2}+25 t^{2}}=\frac{2 \sqrt{13\left(13+2 t^{2}\right)}}{13+2 t^{2}}=\frac{2 \sqrt{13}}{\sqrt{13+2 t^{2}}}=\sqrt{\frac{52}{13+2 t^{2}}} .
\end{aligned}
$$

5. Reparametrize the curve

$$
\vec{r}(t)=\langle 5 t-1,2 t, 3 t+2\rangle
$$

with respect to arc length measured from the point where $t=0$ in the direction of increasing t.

Answer. $\left\|r^{\prime}\right\|=\sqrt{38}$. Take $s=\sqrt{38} t$. Then $\vec{r}(s)=\langle 5 s / \sqrt{38}-1,2 s / \sqrt{38}, 3 s / \sqrt{38}+2\rangle$ is a natural parameterization.
6. Let $f(x, y)=x^{2} y+x \sin y-\ln \left(x-y^{2}\right)$.
(a) Find $f_{y}(x, y)$.

Answer. $f_{y}(x, y)=x^{2}+x \cos y+\frac{2 y}{x-y^{2}}$
(b) Find $f_{x y}(x, y)$.

Answer. $f_{x y}(x, y)=2 x-x \sin y-\frac{2 y}{\left(x-y^{2}\right)^{2}}$

