Josh Swanson Math 583 Spring 2014 Group Cohomology Homework 1 May 2nd, 2014

Problem 1

(1) Let $E_{pq}^2 \Rightarrow H_{p+q}$ be a first quadrant (homological) spectral sequence converging to H_* . Show that there is an exact sequence ("The five-term exact sequence"):

$$H_2 \to E_{20}^2 \xrightarrow{d^2} E_{01}^2 \to H_1 \to E_{10}^2 \to 0.$$

(2) Formulate and prove an analogous statement for a first quadrant cohomological spectral sequence.

For (1), let $\delta = d_{20}^2$: $E_{20}^2 \to E_{01}^2$. It's easy to see that if we take homology at the second page, the third page is

$$E_{01}^2/\operatorname{im}\delta$$
 · · · E_{01}^2 · · · · · · · ·

whereupon the four indicated terms stabilize. Since this is a first quadrant spectral sequence, it's also easy to see the relationship between these E_{pq}^{∞} terms and the filtration on H_{p+q} is

$$E_{01}^{\infty} = F_0 H_1 \qquad \cdot \qquad \cdot$$

$$E_{00}^{\infty} = H_0$$
 $E_{10}^{\infty} = H_1/F_0H_1$ $E_{20}^{\infty} = H_2/F_1H_2$

Hence we have a sequence

$$H_2 \twoheadrightarrow H_2/F_1H_2 \cong \ker \delta \hookrightarrow E_{20}^2 \xrightarrow{\delta} E_{01}^2 \twoheadrightarrow E_{01}^2 / \operatorname{im} \delta \cong F_0H_1 \hookrightarrow H_1 \twoheadrightarrow H_1/F_0H_1 \cong E_{10}^2 \to 0$$

One can quickly check exactness of the induced five-term sequence, so the result follows.

For (2), let $\delta = d_2^{01} \colon E_2^{01} \to E_2^{20}$. The third page is

 $\ker \delta$

$$E_2^{00} = E_2^{10} = E_2^{20} / \operatorname{im} \delta$$

which again collapses, and the E_∞^{pq} terms relate to the filtration on H^* via

$$E^{01}_{\infty} = H^1/F^1H^1 \qquad \cdot \qquad \cdot$$

$$E_{\infty}^{00} = H^0 \qquad \qquad E_{\infty}^{10} = F^1 H^1 \qquad \qquad E_{\infty}^{20} = F^2 H^2$$

Hence we have a sequence

$$0 \to E_2^{10} \cong F^1 H^1 \hookrightarrow H^1 \twoheadrightarrow H^1 / F^1 H^1 \cong \ker \delta \hookrightarrow E_2^{01} \xrightarrow{\delta} E_2^{20} \twoheadrightarrow E_2^{20} / \operatorname{im} \delta \cong F^2 H^2 \hookrightarrow H^2$$

which induces the exact sequence

$$0 \rightarrow E_2^{10} \rightarrow H^1 \rightarrow E_2^{01} \rightarrow E_2^{20} \rightarrow H^2.$$

Problem 2 Let $0 \to A_* \to B_* \to C_* \to 0$ be a short exact sequence of complexes. Using spectral sequences, show that there is an exact sequence in homology:

$$\cdots \to H_{n+1}(C_*) \to H_n(A_*) \to H_n(B_*) \to H_n(C_*) \to H_{n-1}(A_*) \to \cdots$$

Consider the double complex whose bottom two rows are

(where as usual we've toggled the sign on the B_* column's maps). Taking horizontal homology gives 0's everywhere since the rows are exact, so ${}^{II}E^r_{pq}$ collapses to 0 at r = 1, forcing the abutment to be trivial. Hence ${}^{I}E^r_{pq} \Rightarrow 0$. Take vertical homology to get ${}^{I}E^1_{pq}$ as

 $0 \longleftarrow H_1(C_*) \xleftarrow{\beta_1} H_1(B_*) \xleftarrow{\alpha_1} H_1(A_*) \longleftarrow 0$ $0 \longleftarrow H_0(C_*) \xleftarrow{\beta_0} H_0(B_*) \xleftarrow{\alpha_0} H_0(A_*) \longleftarrow 0$

It's easy to see the B_* column stabilizes on the next page, so it must stabilize at 0, i.e. the above is exact at $H_n(B_*)$. Take horizontal homology to get ${}^{I}E_{pq}^2$ as

It's easy to see the C_* and A_* columns stabilize on the next page, so the above is exact at ker α_0 and $H_1(C_*)/\operatorname{im} \beta_1$, i.e. the connecting map is an isomorphism. Hence we have a sequence

$$\cdots \to H_1(A_*) \xrightarrow{\alpha_1} H_1(B_*) \xrightarrow{\beta_1} H_1(C_*) \twoheadrightarrow H_1(C_*) / \operatorname{im} \beta_1 \cong \ker \alpha_0 \hookrightarrow H_0(A_*) \xrightarrow{\alpha_0} \cdots$$

which gives the desired long exact sequence.

Problem 3 Prove a subtler version of the **5-lemma**: namely, what are the "minimal" conditions you need to put on the following commutative diagram with exact rows to conclude that γ is injective? What about surjective?

Consider the diagram as a double complex by flipping it horizontally and toggling the signs of the second and fourth vertical arrows without loss of generality

We find ${}^{II}E^1_{pq}$ is

•	0	0	0	•
↓ ·	0	0	0	

where \cdot represents the kernel or cokernel of the appropriate map. The remaining pages do not change the n = 2 and n = 3 antidiagonals, hence the filtration on these pieces of the abutment H_n are trivial, so $H_2 = H_3 = 0$. In particular ${}^{I}E_{pq}^{\infty} = 0$ for p + q = n = 2, 3.

Now compute ${}^{I}E_{pq}^{1}$:

 $\ker\epsilon \longleftarrow \ker\delta \longleftarrow \ker\gamma \longleftarrow \ker\beta \longleftarrow \ker\alpha$

 $\operatorname{coker} \epsilon \longleftarrow \operatorname{coker} \delta \longleftarrow \operatorname{coker} \gamma \longleftarrow \operatorname{coker} \beta \longleftarrow \operatorname{coker} \alpha$

If ker $\delta = \ker \beta = \operatorname{coker} \alpha = 0$, taking homology at ker γ does nothing at this page or the next, so ker $\gamma = {}^{I}E_{21}^{\infty} = 0$. Likewise if coker $\delta = \operatorname{coker} \beta = \ker \epsilon$, it follows that coker $\gamma = 0$. So, we have

- γ is injective if δ, β are injective and α is surjective
- γ is surjective if δ, β are surjective and ϵ is injective

This seems to essentially be the two "four lemmas"; I'm not sure if this is a "minimal" set of conditions in any reasonable sense. They seem to be the most obvious conditions, if that's worth anything.

Problem 4 Let $f: (A_*, d_A) \to (B_*, d_B)$ be a map of complexes. The mapping cone $\text{Cone}(f)_*$ is the total complex of the double complex $A_* \xrightarrow{f} B_*$. It can be described explicitly as follows:

$$\operatorname{Cone}(f)_n := A_{n-1} \oplus B_n, \qquad d_n \colon A_{n-1} \oplus B_n \xrightarrow{\begin{pmatrix} -d_A & 0\\ -f & d_B \end{pmatrix}} A_{n-2} \oplus B_{n-1}.$$

Show that there is a long exact sequence

 $\cdots \to H_{n+1}(\operatorname{Cone}(f)_*) \to H_n(A_*) \to H_n(B_*) \to H_n(\operatorname{Cone}(f)_*) \to H_{n-1}(A_*) \to \cdots$

Minor note: I assume the double complex $A_* \xrightarrow{f} B_*$ is anticommutative, whereas a "map of complexes" in my experience has commutative squares.

Consider the double complex

$$0 \longleftarrow A_{n-1} \xleftarrow{\pi_A} A_{n-1} \oplus B_n \longleftrightarrow B_n \xleftarrow{0} 0$$
$$\downarrow^{-d_A} \qquad \downarrow^{d_n} \qquad \downarrow^{d_B} 0 \xleftarrow{R_{n-2}} \xleftarrow{\pi_A} A_{n-2} \oplus B_{n-1} \xleftarrow{0} B_{n-1} \xleftarrow{0} 0$$

One can check this has exact rows and columns. Hence we have an exact sequence of chain complexes

$$0 \to B_* \to \operatorname{Cone}(f)_* \to A[-1]_* \to 0,$$

which from Problem 2 gives rise to a long exact sequence

$$\cdots \to H_{n+1}(\operatorname{Cone}(f)_*) \to H_n A_* \to H_n(B_*) \to H_n(\operatorname{Cone}(f)_*) \to H_{n-1}(A_*) \to \cdots$$

Problem 5 Establish the Künneth spectral sequence for complexes (it's ok to use the classical Künneth formula as in [Weibel, 3.6.3] if you feel that you need to): Let R be a (commutative) ring and C_*, D_* complexes of R-modules bounded below. Assume the C_n are flat for all n. Show that there is a convergent spectral sequence

$$E_{pq}^{2} = \bigoplus_{s+t=q} \operatorname{Tor}_{p}^{R}(H_{s}(C_{*}), H_{t}(D_{*})) \Rightarrow H_{p+q}(C_{*} \otimes_{R} D_{*})$$

where $H_{p+q}(C_* \otimes_R D_*)$ stands for the homology of the total complex.

Let $P_* \to D_*$ be a Cartan-Eilenberg resolution. Consider the double chain complex

$$E_{pq}^0 = \operatorname{Tot}_q(C_* \otimes P_{*p})$$

where the vertical maps are the usual total complex maps, and the horizontal maps are induced by the horizontal maps from $P_* \rightarrow D_*$. Take horizontal homology to get

$$({}^{II}E^{1}_{pq})^{T} = H_{p}(\operatorname{Tot}_{q}(C_{*}\otimes_{R}P_{*})) = H_{p}\left(\bigoplus_{s+t=q}C_{s}\otimes_{R}P_{t}\right)$$
$$= \bigoplus_{s+t=q}H_{p}(C_{s}\otimes_{R}P_{t}) = \bigoplus_{s+t=q}C_{s}\otimes_{R}H_{p}(P_{t}) = \bigoplus_{s+t=q}C_{s}\otimes_{R}\delta_{p0}D_{t}$$
$$= \delta_{p0}\operatorname{Tot}_{q}(C_{*}\otimes_{R}D_{*}),$$

where we've used the following facts: \oplus is finite; homology commutes with finite sums; homology commutes with $C_s \otimes_R -$ since C_s is flat; $P_t \to D_t$ is a projective resolution, so taking homology gives zeros except at the very bottom when it gives D_t . That is, we're left with just $\operatorname{Tot}_q(C_* \otimes_R D_*)$ in the p = 0 column. Thus we'll be able to recover the abutment exactly, not just the associated graded object. Take vertical homology to get

$$({}^{II}E^2_{pq})^T = \delta_{p0}H_q(\operatorname{Tot}_\circ(C_*\otimes_R D_*)).$$

The sequence stabilizes here, so the *n*th piece of the abutment is $H_n(\text{Tot}_o(C_* \otimes_R D_*))$ (since p = 0 gives the only non-zero term and n = p + q).

On the other hand, take vertical homology of E_{pq}^0 to get

$${}^{I}E_{pq}^{1} = H_{q}(\operatorname{Tot}_{\circ}(C_{*} \otimes_{R} P_{*p}))$$

and then take horizontal homology to get

$${}^{I}E_{pq}^{2} = H_{p}(H_{q}(\operatorname{Tot}_{\circ}(C_{*}\otimes_{R}P_{*}))) = H_{p}\left(\bigoplus_{s+t=q}H_{s}(C_{*})\otimes_{R}H_{t}(P_{*})\right)$$
$$= \bigoplus_{s+t=q}H_{p}(H_{s}(C_{*})\otimes_{R}H_{t}(P_{*})) = \bigoplus_{s+t=q}\operatorname{Tor}_{p}^{R}(H_{s}(C_{*}),H_{t}(D_{*})),$$

where we've used the following facts: the Künneth formula quoted below; \oplus is finite; homology commutes with finite sums; $H_t(P_{*.}) \to H_t(D_*)$ is a projective resolution; Tor is computed in the usual way. This application of the Künneth formula uses the fact that $P_{*.}$ is projective, hence flat, and $B(P_{*.})$ is projective, hence flat, which was proved in class; it also uses the fact that $H_t(P_{*.})$ is projective, hence flat, so the Tor term vanishes, and we have an isomorphism. In all we have a (convergent) spectral sequence

$$\bigoplus_{s+t=q} \operatorname{Tor}_p^R(H_s(C_*), H_t(D_*)) \Rightarrow H_{p+q}(C_* \otimes_R D_*).$$

1 Theorem (Künneth formula for complexes)

Let P and Q be right and left R-module complexes, respectively. If P_n and $d(P_n)$ are flat for each n, then there is an exact sequence

$$0 \to \bigoplus_{p+q=n} H_p(P) \otimes H_q(Q) \to H_n(P \otimes_R Q) \to \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(P), H_q(Q)) \to 0.$$