Josh Swanson
Math 583 Spring 2014 Group Cohomology
Homework 1
May 2nd, 2014

Problem 1

(1) Let $E_{p q}^{2} \Rightarrow H_{p+q}$ be a first quadrant (homological) spectral sequence converging to H_{*}. Show that there is an exact sequence ("The five-term exact sequence"):

$$
H_{2} \rightarrow E_{20}^{2} \xrightarrow{d^{2}} E_{01}^{2} \rightarrow H_{1} \rightarrow E_{10}^{2} \rightarrow 0 .
$$

(2) Formulate and prove an analogous statement for a first quadrant cohomological spectral sequence.

For (1), let $\delta=d_{20}^{2}: E_{20}^{2} \rightarrow E_{01}^{2}$. It's easy to see that if we take homology at the second page, the third page is

$$
\begin{array}{ccc}
E_{01}^{2} / \operatorname{im} \delta & \cdot & \cdot \\
E_{00}^{2} & E_{10}^{2} & \operatorname{ker} \delta
\end{array}
$$

whereupon the four indicated terms stabilize. Since this is a first quadrant spectral sequence, it's also easy to see the relationship between these $E_{p q}^{\infty}$ terms and the filtration on H_{p+q} is

$$
\begin{aligned}
& E_{01}^{\infty}=F_{0} H_{1} \\
& E_{00}^{\infty}=H_{0} \quad E_{10}^{\infty}=H_{1} / F_{0} H_{1} \quad E_{20}^{\infty}=H_{2} / F_{1} H_{2}
\end{aligned}
$$

Hence we have a sequence

$$
H_{2} \rightarrow H_{2} / F_{1} H_{2} \cong \operatorname{ker} \delta \hookrightarrow E_{20}^{2} \xrightarrow{\delta} E_{01}^{2} \rightarrow E_{01}^{2} / \operatorname{im} \delta \cong F_{0} H_{1} \hookrightarrow H_{1} \rightarrow H_{1} / F_{0} H_{1} \cong E_{10}^{2} \rightarrow 0
$$

One can quickly check exactness of the induced five-term sequence, so the result follows.
For (2), let $\delta=d_{2}^{01}: E_{2}^{01} \rightarrow E_{2}^{20}$. The third page is

$$
\begin{array}{ccc}
\operatorname{ker} \delta & \cdot & \cdot \\
E_{2}^{00} & E_{2}^{10} & E_{2}^{20} / \mathrm{im} \delta
\end{array}
$$

which again collapses, and the $E_{\infty}^{p q}$ terms relate to the filtration on H^{*} via

$$
\begin{aligned}
& E_{\infty}^{01}=H^{1} / F^{1} H^{1} \\
& E_{\infty}^{00}=H^{0} \quad E_{\infty}^{10}=F^{1} H^{1} \quad E_{\infty}^{20}=F^{2} H^{2}
\end{aligned}
$$

Hence we have a sequence

$$
0 \rightarrow E_{2}^{10} \cong F^{1} H^{1} \hookrightarrow H^{1} \rightarrow H^{1} / F^{1} H^{1} \cong \operatorname{ker} \delta \hookrightarrow E_{2}^{01} \xrightarrow{\delta} E_{2}^{20} \rightarrow E_{2}^{20} / \operatorname{im} \delta \cong F^{2} H^{2} \hookrightarrow H^{2}
$$

which induces the exact sequence

$$
0 \rightarrow E_{2}^{10} \rightarrow H^{1} \rightarrow E_{2}^{01} \rightarrow E_{2}^{20} \rightarrow H^{2}
$$

Problem 2 Let $0 \rightarrow A_{*} \rightarrow B_{*} \rightarrow C_{*} \rightarrow 0$ be a short exact sequence of complexes. Using spectral sequences, show that there is an exact sequence in homology:

$$
\cdots \rightarrow H_{n+1}\left(C_{*}\right) \rightarrow H_{n}\left(A_{*}\right) \rightarrow H_{n}\left(B_{*}\right) \rightarrow H_{n}\left(C_{*}\right) \rightarrow H_{n-1}\left(A_{*}\right) \rightarrow \cdots
$$

Consider the double complex whose bottom two rows are

(where as usual we've toggled the sign on the B_{*} column's maps). Taking horizontal homology gives 0's everywhere since the rows are exact, so ${ }^{I I} E_{p q}^{r}$ collapses to 0 at $r=1$, forcing the abutment to be trivial. Hence ${ }^{I} E_{p q}^{r} \Rightarrow 0$. Take vertical homology to get ${ }^{I} E_{p q}^{1}$ as

$$
\begin{aligned}
& 0 \longleftarrow H_{1}\left(C_{*}\right) \stackrel{\beta_{1}}{\longleftarrow} H_{1}\left(B_{*}\right) \stackrel{\alpha_{1}}{\longleftarrow} H_{1}\left(A_{*}\right) \longleftarrow 0 \\
& 0 \longleftarrow H_{0}\left(C_{*}\right) \stackrel{\beta_{0}}{\longleftarrow} H_{0}\left(B_{*}\right) \stackrel{\alpha_{0}}{\longleftarrow} H_{0}\left(A_{*}\right) \longleftarrow 0
\end{aligned}
$$

It's easy to see the B_{*} column stabilizes on the next page, so it must stabilize at 0 , i.e. the above is exact at $H_{n}\left(B_{*}\right)$. Take horizontal homology to get ${ }^{I} E_{p q}^{2}$ as

It's easy to see the C_{*} and A_{*} columns stabilize on the next page, so the above is exact at ker α_{0} and $H_{1}\left(C_{*}\right) / \operatorname{im} \beta_{1}$, i.e. the connecting map is an isomorphism. Hence we have a sequence

$$
\cdots \rightarrow H_{1}\left(A_{*}\right) \xrightarrow{\alpha_{1}} H_{1}\left(B_{*}\right) \xrightarrow{\beta_{1}} H_{1}\left(C_{*}\right) \rightarrow H_{1}\left(C_{*}\right) / \operatorname{im} \beta_{1} \cong \operatorname{ker} \alpha_{0} \hookrightarrow H_{0}\left(A_{*}\right) \xrightarrow{\alpha_{Q}} \cdots
$$

which gives the desired long exact sequence.

Problem 3 Prove a subtler version of the 5-lemma: namely, what are the "minimal" conditions you need to put on the following commutative diagram with exact rows to conclude that γ is injective? What about surjective?

Consider the diagram as a double complex by flipping it horizontally and toggling the signs of the second and fourth vertical arrows without loss of generality

We find ${ }^{I I} E_{p q}^{1}$ is

where • represents the kernel or cokernel of the appropriate map. The remaining pages do not change the $n=2$ and $n=3$ antidiagonals, hence the filtration on these pieces of the abutment H_{n} are trivial, so $H_{2}=H_{3}=0$. In particular ${ }^{I} E_{p q}^{\infty}=0$ for $p+q=n=2,3$.

Now compute ${ }^{I} E_{p q}^{1}$:
$\operatorname{ker} \epsilon \longleftarrow \operatorname{ker} \delta \longleftarrow \operatorname{ker} \gamma \longleftarrow \operatorname{ker} \beta \longleftarrow \operatorname{ker} \alpha$
$\operatorname{coker} \epsilon \longleftarrow \operatorname{coker} \delta \longleftarrow \operatorname{coker} \gamma \longleftarrow \operatorname{coker} \beta \longleftarrow \operatorname{coker} \alpha$

If $\operatorname{ker} \delta=\operatorname{ker} \beta=\operatorname{coker} \alpha=0$, taking homology at $\operatorname{ker} \gamma$ does nothing at this page or the next, so $\operatorname{ker} \gamma={ }^{I} E_{21}^{\infty}=0$. Likewise if $\operatorname{coker} \delta=\operatorname{coker} \beta=\operatorname{ker} \epsilon$, it follows that coker $\gamma=0$. So, we have

- γ is injective if δ, β are injective and α is surjective
- γ is surjective if δ, β are surjective and ϵ is injective

This seems to essentially be the two "four lemmas"; I'm not sure if this is a "minimal" set of conditions in any reasonable sense. They seem to be the most obvious conditions, if that's worth anything.

Problem 4 Let $f:\left(A_{*}, d_{A}\right) \rightarrow\left(B_{*}, d_{B}\right)$ be a map of complexes. The mapping cone Cone $(f)_{*}$ is the total complex of the double complex $A_{*} \xrightarrow{f} B_{*}$. It can be described explicitly as follows:

$$
\operatorname{Cone}(f)_{n}:=A_{n-1} \oplus B_{n}, \quad d_{n}: A_{n-1} \oplus B_{n} \xrightarrow{\left(\begin{array}{cc}
-d_{A} & 0 \\
-f & d_{B}
\end{array}\right)} A_{n-2} \oplus B_{n-1}
$$

Show that there is a long exact sequence

$$
\cdots \rightarrow H_{n+1}\left(\operatorname{Cone}(f)_{*}\right) \rightarrow H_{n}\left(A_{*}\right) \rightarrow H_{n}\left(B_{*}\right) \rightarrow H_{n}\left(\operatorname{Cone}(f)_{*}\right) \rightarrow H_{n-1}\left(A_{*}\right) \rightarrow \cdots
$$

Minor note: I assume the double complex $A_{*} \xrightarrow{f} B_{*}$ is anticommutative, whereas a "map of complexes" in my experience has commutative squares.

Consider the double complex

One can check this has exact rows and columns. Hence we have an exact sequence of chain complexes

$$
0 \rightarrow B_{*} \rightarrow \operatorname{Cone}(f)_{*} \rightarrow A[-1]_{*} \rightarrow 0
$$

which from Problem 2 gives rise to a long exact sequence

$$
\cdots \rightarrow H_{n+1}\left(\operatorname{Cone}(f)_{*}\right) \rightarrow H_{n} A_{*} \rightarrow H_{n}\left(B_{*}\right) \rightarrow H_{n}\left(\operatorname{Cone}(f)_{*}\right) \rightarrow H_{n-1}\left(A_{*}\right) \rightarrow \cdots
$$

Problem 5 Establish the Künneth spectral sequence for complexes (it's ok to use the classical Künneth formula as in [Weibel, 3.6.3] if you feel that you need to): Let R be a (commutative) ring and C_{*}, D_{*} complexes of R-modules bounded below. Assume the C_{n} are flat for all n. Show that there is a convergent spectral sequence

$$
E_{p q}^{2}=\bigoplus_{s+t=q} \operatorname{Tor}_{p}^{R}\left(H_{s}\left(C_{*}\right), H_{t}\left(D_{*}\right)\right) \Rightarrow H_{p+q}\left(C_{*} \otimes_{R} D_{*}\right)
$$

where $H_{p+q}\left(C_{*} \otimes_{R} D_{*}\right)$ stands for the homology of the total complex.

Let $P_{*} \rightarrow D_{*}$ be a Cartan-Eilenberg resolution. Consider the double chain complex

$$
E_{p q}^{0}=\operatorname{Tot}_{q}\left(C_{*} \otimes P_{* p}\right)
$$

where the vertical maps are the usual total complex maps, and the horizontal maps are induced by the horizontal maps from $P_{*} \rightarrow D_{*}$. Take horizontal homology to get

$$
\begin{aligned}
\left({ }^{I I} E_{p q}^{1}\right)^{T} & =H_{p}\left(\operatorname{Tot}_{q}\left(C_{*} \otimes_{R} P_{*} .\right)\right)=H_{p}\left(\bigoplus_{s+t=q} C_{s} \otimes_{R} P_{t} .\right) \\
& =\bigoplus_{s+t=q} H_{p}\left(C_{s} \otimes_{R} P_{t} .\right)=\bigoplus_{s+t=q} C_{s} \otimes_{R} H_{p}\left(P_{t} .\right)=\bigoplus_{s+t=q} C_{s} \otimes_{R} \delta_{p 0} D_{t} \\
& =\delta_{p 0} \operatorname{Tot}_{q}\left(C_{*} \otimes_{R} D_{*}\right),
\end{aligned}
$$

where we've used the following facts: \oplus is finite; homology commutes with finite sums; homology commutes with $C_{s} \otimes_{R}$ - since C_{s} is flat; $P_{t} \rightarrow D_{t}$ is a projective resolution, so taking homology gives zeros except at the very bottom when it gives D_{t}. That is, we're left with just $\operatorname{Tot}_{q}\left(C_{*} \otimes_{R} D_{*}\right)$ in the $p=0$ column. Thus we'll be able to recover the abutment exactly, not just the associated graded object. Take vertical homology to get

$$
\left({ }^{I I} E_{p q}^{2}\right)^{T}=\delta_{p 0} H_{q}\left(\operatorname{Tot}_{\circ}\left(C_{*} \otimes_{R} D_{*}\right)\right)
$$

The sequence stabilizes here, so the nth piece of the abutment is $H_{n}\left(\operatorname{Tot}_{\circ}\left(C_{*} \otimes_{R} D_{*}\right)\right)$ (since $p=0$ gives the only non-zero term and $n=p+q$).

On the other hand, take vertical homology of $E_{p q}^{0}$ to get

$$
{ }^{I} E_{p q}^{1}=H_{q}\left(\operatorname{Tot}_{\circ}\left(C_{*} \otimes_{R} P_{* p}\right)\right)
$$

and then take horizontal homology to get

$$
\begin{aligned}
{ }^{I} E_{p q}^{2} & =H_{p}\left(H_{q}\left(\operatorname{Tot}_{\circ}\left(C_{*} \otimes_{R} P_{* .}\right)\right)\right)=H_{p}\left(\bigoplus_{s+t=q} H_{s}\left(C_{*}\right) \otimes_{R} H_{t}\left(P_{*} .\right)\right) \\
& =\bigoplus_{s+t=q} H_{p}\left(H_{s}\left(C_{*}\right) \otimes_{R} H_{t}\left(P_{*} .\right)\right)=\bigoplus_{s+t=q} \operatorname{Tor}_{p}^{R}\left(H_{s}\left(C_{*}\right), H_{t}\left(D_{*}\right)\right)
\end{aligned}
$$

where we've used the following facts: the Künneth formula quoted below; \oplus is finite; homology commutes with finite sums; $H_{t}\left(P_{*}\right) \rightarrow H_{t}\left(D_{*}\right)$ is a projective resolution; Tor is computed in the usual way. This application of the Künneth formula uses the fact that P_{*}. is projective, hence flat, and $B\left(P_{*}.\right)$ is projective, hence flat, which was proved in class; it also uses the fact that $H_{t}\left(P_{* .}\right)$ is projective, hence flat, so the Tor term vanishes, and we have an isomorphism. In all we have a (convergent) spectral sequence

$$
\bigoplus_{s+t=q} \operatorname{Tor}_{p}^{R}\left(H_{s}\left(C_{*}\right), H_{t}\left(D_{*}\right)\right) \Rightarrow H_{p+q}\left(C_{*} \otimes_{R} D_{*}\right)
$$

1 Theorem (Künneth formula for complexes)

Let P and Q be right and left R-module complexes, respectively. If P_{n} and $d\left(P_{n}\right)$ are flat for each n, then there is an exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(P) \otimes H_{q}(Q) \rightarrow H_{n}\left(P \otimes_{R} Q\right) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}_{1}^{R}\left(H_{p}(P), H_{q}(Q)\right) \rightarrow 0
$$

