

Vertices/Nodes: The common

 endpoint of two or more rays or line segments.Edges: the line segments where two surfaces meet
Faces/Regions:
Interior: area containing all the edges adjacent to it
Exterior: the unbounded area outside the whole graph

Definition:

A planar graph is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

planar graph

non-planar graph

True or False:

Is the following diagram a

Reason: Because a graph is also planar if the nodes of the graph can be rearranged (without breaking or adding any edges)
if we did the following changes:

http://www.flashandmath.com/ mathlets/discrete/graphtheory/ planargraphs.html

More Examples:

Increasing the number by vertices:

Special Planan Graph

Tree: any connected graph with no cycles.

Notices: it only has an exterior face.

cycle:A cycle in a graph means there is a path from an object back to itself

Platonic Solids and Planar Graphs

Euler's Characteristic Formula $V-E+F=2$

Euler's Characteristic Formula states that for any connected planar graph, the number of vertices (V) minus the number of edges (E) plus the number of faces (F) equals 2.

Platonic Solids

Definition

Platonic Solids:

- Regular
- Convex
- Polyhedron
has regular polygon
 faces with the same
number of faces meeting at each vertex.

How many regular convex polehedra are there?

$n=3$
equilateral

triangle square | $n=5$ |
| :---: |
| regular |
| pentagon |
| nexagon |
| neptagon |

The Five Platonic Solids

Euclidean Characteristic

$$
V-E+F=2
$$

Euler's Formula Holds for all 5 Platonic Solids

Proof that there are only 5 platonic solids
Using Euler's Formula

Proof

- Let n be the number of edges surrounding each face
- Let F be the number of faces
- Let E be the number of edges on the whole solid

n : number of edges surrounding each face

F: number of faces
E : number of edges

Proof

So does $F^{*} n=E$?

Not quite, since each edge will touch two faces, so F * n will double count all of the edges,
i.e. $F^{*} n=2 E$

$\left(F^{*} n\right) / 2=E$
n : number of edges surrounding each face

F: number of faces
E : number of edges

Proof

So what is E in terms of the number of vertices?

- Let c be the number of edges coming together at each vertex
- Let V be the number of vertices in the whole solid

n : number of edges surrounding each face

F: number of faces
E : number of edges
c: number of edges coming to each vertex

V : number of vertices

Proof

So what is E in terms of the number of vertices?

So does $E=V^{*} c$?

Not quite, since each edge comes to two vertices, so this will double count each edge
i.e. $2 E=V$ * c
$E=(V * c) / 2$

n : number of edges surrounding each face

F: number of faces
E : number of edges
c: number of edges coming to each vertex

V : number of vertices

Proof

Euler's Formula:
$V-E+F=2$
To use this, let's solve for V and F in our equations
$\left(F^{*} n\right) / 2=E$

n : number of edges surrounding each face

F: number of faces
E : number of edges
c: number of edges coming to each vertex

V : number of vertices

Proof

Euler's Formula:
$V-E+F=2$
To use this, let's solve for V and F in our equations

$$
\begin{gathered}
\left(\frac{2 E}{c}\right)-E+\left(\frac{2 E}{n}\right)=2 \\
E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2
\end{gathered}
$$

Part of being a platonic solid is that each face is a regular polygon. The least number of sides (n in our case) for a regular polygon is 3, so

$$
n \geq 3
$$

There also must be at least 3 faces at each vertex, so

n : number of edges surrounding each face
F : number of faces
E : number of edges
c: number of edges coming to each vertex

V : number of vertices

Proof

$E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2$
Let's think about this equation
Since E is the number of edges, E must be positive, so $\left(\frac{2}{c}-1+\frac{2}{n}\right)>0$

$$
\begin{aligned}
& F=2 E / n \\
& V=2 E / c
\end{aligned}
$$

n : number of edges
n \geq surrounding each face
F : number of faces
E : number of edges
c: number of edges $c>3$ coming to each vertex

V : number of vertices

Proof

$$
E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2
$$

$\left(\frac{2}{c}-1+\frac{2}{n}\right)>0$
Let's think about this equation
It will put some restrictions on c and n

Since $n \geq 3$, we have that $\frac{1}{n} \leq \frac{1}{3}$

Now, watch carefully...

$c=3,4$, or 5

n: number of edges n surrounding each face
F : number of faces
E : number of edges

V : number of vertices

Proof

$$
E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2
$$

$\left(\frac{2}{c}-1+\frac{2}{n}\right)>0$
Let's think about this equation
It will put some restrictions on c and n
$\frac{1}{n}>\frac{1}{2}-\frac{1}{c}>\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
Since $c \geq 3$, we have that $\frac{1}{c} \leq \frac{1}{3}$

$n<6$
$3 \leq n<$
\square

$$
n=3,4 \text {, or } 5
$$

n : number of edges $n_{n}^{n}=3, \operatorname{sor} 5$ surrounding eacb pace
E : number of edges

$$
c=3,4, \text { or } 5
$$

c: number of edges coming to each vertex

V : number of vertices

Proof

$$
E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { When } \mathrm{c}=3, \mathrm{n}=3 \\
\text { When } \mathrm{c}=14, \mathrm{n}=3 \\
\text { Whe } 5 \\
\text { When } \mathrm{c}=5, \mathrm{n}=3
\end{array} \\
& \frac{1}{n}>\frac{1}{2}-\frac{1}{c} \\
& \text { When } \mathrm{c}=3 \text {, } \frac{1}{n}>\frac{1}{6} \text {, so } \mathrm{n}<6 \text {, so } \mathrm{n}=3,4 \text {, or } 5 \\
& \text { When } \mathrm{c}=4, \frac{1}{n}>\frac{1}{4} \text {, so } \mathrm{n}<4 \text {, so } \mathrm{n}=3 \\
& \text { When } \mathrm{c}=5, \frac{1}{n}>\frac{3}{10} \text {, so } \mathrm{n}=3
\end{aligned}
$$

$$
\mathrm{n}=3,4, \text { or } 5
$$

n : number of edges surrounding each face

F: number of faces
E : number of edges

$$
c=3,4, \text { or } 5
$$

c: number of edges coming to each vertex

V : number of vertices

Proof

$$
E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2
$$

$$
\begin{aligned}
& \text { When } c=3, n=3,4 \text {, or } 5 \\
& \text { When } c=4, n=3 \\
& \text { When } c=5, n=3
\end{aligned}
$$

c	n	V	E	F	Solid
3	3	4	6	4	Tetrahedron
3	4	8	12	6	Square
3	5	20	30	12	Dodecahedron
4	3	6	12	8	Octahedron
5	3	12	30	20	Icosahedron

The 5 Platonic Solids

$$
n=3,4 \text {, or } 5
$$

n : number of edges surrounding each face
F : number of faces
E : number of edges

$$
\mathrm{c}=3,4 \text {, or } 5
$$

c: number of edges coming to each vertex

V : number of vertices

Remember this?

A planar graph is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

planar graph

non-planar graph

Remember this?

A planar graph is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

planar graph

Corresponding Platonic Solid

Outline of visual to accompany proof by angle sums

1. Make planar graph using straight lines
2. Find total angle sum using polygon sums.
$(\mathrm{n}-2) 180$ *6F , n=4
Total sum $=360 * 6=(2 \mathrm{E}-2 \mathrm{~F}) 180=\left(2^{*} 12-2^{*} 6\right) 180=360 * 6$
3. Find total angle sum using vertices

Interior vertices (4) = 360*4
Exterior vertices = 2(180-exterior angle)
Total sum $=360$ IV +360 EV -2*360
$=360 \mathrm{~V}-2 * 360=360 * 6$
4. Set the equations equal to each other
(2E-2F) $180=360 \mathrm{~V}-2 * 360$
Divide by $360=\mathrm{E}-\mathrm{F}=\mathrm{V}-2$
Rearrange $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$

