Euler's Formula & Platonic Solids

Introduction: Basic Terms

Vertices/Nodes: The common

endpoint of two or more rays or line segments.

Edges: the line segments where two surfaces meet

Faces/Regions:

Interior: area containing all the edges adjacent to it Exterior: the unbounded area outside the

whole graph

Definition:

A <u>planar graph</u> is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

planar graph

non-planar graph

True or False:

Is the following diagram a planar graph?

Answer: Yes.

Reason: Because a graph is also <u>planar</u> if the nodes of the graph can be rearranged (without breaking or adding any edges)

if we did the following changes:

http://www.flashandmath.com/ mathlets/discrete/graphtheory/ planargraphs.html

More Examples:

Increasing the number by vertices.

Special Planar Graph

Tree: any connected graph with no cycles.

Notices: it only has an exterior face.

CYCIE: A cycle in a graph means there is a path from an object back to itself

Platonic Solids and Planar Graphs

Euler's Characteristic Formula V - E + F = 2

Euler's Characteristic Formula states that for any connected planar graph, the number of vertices (V) minus the number of edges (E) plus the number of faces (F) equals 2.

Platonic Solids

Definition

Platonic Solids:

- Regular
- Convex
- Polyhedron

has regular polygon faces with the same number of faces meeting at each vertex.

How many regular convex polehedra are there?

ć					
Name Vertice s	Tetrahedron	Hexahedron (Cube)	Octahedron	Dodecahedron	Icosahedron
Edges	4	8	6	20	12
Faces	6	12	12	30	30
1 4000	4				
		6	8	12	20

The Five Platonic Solids

Together

Euclidean Characteristic V - E + F = 2

NameVe rtices	Tetrahedron	Hexahedron (Cube)	Octahedron	Dodecahedron	Icosahedron
Edges	4	8	6	20	12
Faces	6	12	12	30	30
	4				
V - E + F		6	8	12	20
	4 - 6 + 4 = 2				
		8 - 12 + 6 = 2	6 - 12 + 8 = 2	20 - 30 + 12 = 2	12 - 30 + 20 = 2

Euler's Formula Holds for all 5 Platonic Solids

Proof that there are only 5 platonic solids

Using Euler's Formula

- Let n be the number of edges surrounding each face
- Let F be the number of faces
- Let E be the number of edges on the whole solid

n: number of edges surrounding each face

F: number of faces

E: number of edges

So does F * n = E?

Not quite, since each edge will touch two faces, so F * n will double count all of the edges,

i.e. F * n = 2E

(F * n) / 2 = E

n: number of edges surrounding each face

F: number of faces

E: number of edges

(F * n) / 2 = E

So what is E in terms of the number of vertices?

- Let c be the number of edges coming together at each vertex
- Let V be the number of vertices in the whole solid

n: number of edges surrounding each face

F: number of faces

E: number of edges

c: number of edges coming to each vertex

(F * n) / 2 = E

So what is E in terms of the number of vertices?

So does E = V * c?

Not quite, since each edge comes to two vertices, so this will double count each edge

i.e. 2E = V * c

E = (V * c) / 2

n: number of edges surrounding each face

F: number of faces

E: number of edges

c: number of edges coming to each vertex

(F * n) / 2 = E

(V * c) / 2 = E

Euler's Formula:

V - E + F = 2

To use this, let's solve for V and F in our equations

n: number of edges surrounding each face

F: number of faces

E: number of edges

c: number of edges coming to each vertex

(F=*20€//2n=E

(₩<u>=</u>*2€//2c=E

Euler's Formula:

V - E + F = 2

To use this, let's solve for V and F in our equations

$$\left(\frac{2E}{c}\right) - E + \left(\frac{2E}{n}\right) = 2$$
$$E\left(\frac{2}{c} - 1 + \frac{2}{n}\right) = 2$$

Part of being a platonic solid is that each face is a regular polygon. The least number of sides (n in our case) for a regular polygon is 3, so

 $n \ge 3$

There also must be at least 3 faces at each vertex, so

 $c \geq 3$

n: number of edges surrounding each face

F: number of faces

E: number of edges

c: number of edges coming to each vertex

F = 2E / n

V = 2E / c

$$E\left(\frac{2}{c}-1+\frac{2}{n}\right) = 2$$

Let's think about this equation

Since E is the number of edges, E must be positive, so

$$\left(\frac{2}{c} - 1 + \frac{2}{n}\right) > 0$$

n: number of edges $n \geq 3$ surrounding each face

F: number of faces

E: number of edges

c: number of edges $c \geq 3$ coming to each vertex

$$E\left(\frac{2}{c}-1+\frac{2}{n}\right) = 2$$

> 3

$$\begin{pmatrix} \frac{2}{c} - 1 + \frac{2}{n} \\ > 0 \end{pmatrix}$$
Let's think about this equation
It will put some restrictions on c and n

$$\frac{1}{c} > \frac{1}{2} - \frac{1}{n} > \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$
Since $n \ge 3$, we have that $\frac{1}{n} \le \frac{1}{3}$

$$\frac{1}{c} > \frac{1}{6}$$
 $c < 6 \longrightarrow 3 \le c < 6$
Now, watch carefully...
Now, watch carefully...

 $E\left(\frac{2}{c}-1+\frac{2}{n}\right) = 2$

$$\left(\frac{2}{c}-1+\frac{2}{n}\right) > 0$$
Let's think about this equation
It will put some restrictions on c and n

$$\frac{1}{n} > \frac{1}{2} - \frac{1}{c} > \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$
Since $c \ge 3$, we have that $\frac{1}{c} \le \frac{1}{3}$

$$\frac{1}{n} > \frac{1}{6}$$
 $n < 6 \longrightarrow 3 \le n < 6$

$$n = 3, 4, \text{ or } 5$$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of edges $c = 3, 4, \text{ or } 5$
n: number of vertices
n = 3, 4, \text{ or } 5

$$E\left(\frac{2}{c}-1+\frac{2}{n}\right)=2$$

$$\begin{pmatrix} 2 \\ \text{When } c_{4} = 3 \\ \text{When } c = 3 \\ \text{When } c = 4 \\ n = 3 \\ \text{When } c = 5, n = 3 \\ \frac{1}{n} > \frac{1}{2} - \frac{1}{c} \\ \text{When } c = 3, \frac{1}{n} > \frac{1}{6} \\ \text{When } c = 3, \frac{1}{n} > \frac{1}{6} \\ \text{, so } n < 6, \text{ so } n = 3, 4, \text{ or } 5 \\ \text{When } c = 3, \frac{1}{n} > \frac{1}{6} \\ \text{When } c = 3, \frac{1}{n} \\ \text{When } c = 3, \frac{1}{n} > \frac{1}{6} \\ \text{When } c = 3, \frac{1}{n} \\ \frac{1}{n} \\ \text{When } c = 3, \frac{1}{n} \\ \frac{1}{n$$

When c = 4,
$$\frac{1}{n} > \frac{1}{4}$$
, so n < 4, so n = 3

When c = 5,
$$\frac{1}{n} > \frac{3}{10}$$
 , so n = 3

n = 3, 4, or 5 n: number of edges surrounding each face

F: number of faces

E: number of edges c = 3, 4, or 5 c: number of edges coming to each vertex

$$E\left(\frac{2}{c}-1+\frac{2}{n}\right) = 2$$

When c = 3, n = 3, 4, or 5 When c = 4, n = 3When c = 5, n = 3

с	n	V	Ε	F	Solid
3	3	4	6	4	Tetrahedron
3	4	8	12	6	Square
3	5	20	30	12	Dodecahedron
4	3	6	12	8	Octahedron
5	3	12	30	20	Icosahedron

The 5 Platonic Solids

n = 3, 4, or 5 n: number of edges surrounding each face

F: number of faces

E: number of edges c = 3, 4, or 5 c: number of edges

c: number of edges coming to each vertex

Remember this?

A <u>planar graph</u> is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

Remember this?

A <u>planar graph</u> is one that can be drawn on a plane in such a way that there are no "edge crossings," i.e. edges intersect only at their common vertices.

planar graph

Corresponding Platonic Solid

Outline of visual to accompany proof by angle sums

- 1. Make planar graph using straight lines
- 2. Find total angle sum using polygon sums.
- (n-2)180 *6F , n=4

Total sum = $360^{\circ}6 = (2E-2F)180 = (2^{\circ}12-2^{\circ}6)180 = 360^{\circ}6$

3. Find total angle sum using vertices

Interior vertices (4) = 360*4

Exterior vertices = 2(180-exterior angle)

Total sum = 360IV + 360EV -2*360

= 360V - 2*360 = 360*6

4. Set the equations equal to each other (2E-2F)180 = 360V - 2*360Divide by 360 = E-F = V - 2Rearrange V-E+F = 2

Cube

Shadow