
SOLUTION TO PROBLEM 3B) ON HW 7

NATE BOTTMAN

Let pk(x1, . . . , xn) = xk
1 + . . . + xk

n. By the theorem on this worksheet, pk can be expressed in
terms of elementary symmetric polynomials. Explicit formulas can be obtained recursively from the
Newton Identities:

ksk =

k
∑

i=1

(−1)i−1sk−ipi

Problem 3(b). Let R be a field of characteristic 0. Show that {p1, . . . , pn} are algebraically

independent generators of the ring of symmetric polynomials R[x1, . . . , xn]Sn .

Proof. First, I claim that p1, . . . , pn generate the ring of symmetric polynomials. Since the elemen-
tary symmetric polynomials generate the symmetric polynomials, it would suffice to show that the
power sums generate the elementary symmetric polynomials. We prove this in a lemma.

Lemma 1.1. Fix n ≥ 0. For all k ∈ [0, n], sk can be expressed as a polynomial Fk in p1, . . . , pk.

Proof of lemma. The k = 0 case follows immediately, since s0 = 1. Assume now that the result
holds up to, but not including, some k ∈ [0, n − 1]. By the Newton identity,

sk = k−1
k

∑

i=1

(−1)i−1sk−ipi =

k
∑

i=1

(−1)i−1k−1Fk−i (p1, . . . , pk−i) pi.

This is a polynomial in the power sums p1, . . . , pk. �

It remains to show that the power sums p1, . . . , pn are algebraically independent. I relegate this
result, as well, to a lemma.

Lemma 1.2. For n ≥ 0 and k ∈ [0, n], the power sums p1 (x1, . . . , xn) , . . . , pk (x1, . . . , xn) are
algebraically independent.

Proof. Fix n ≥ 0. For k = 0, the result is trivial, since a nontrivial element of R, without adjoining
anything, is simply a nontrivial element of the ring. Next, assume that the result has been proven
up to, but not including, some k ∈ [1, n]. Consider a nontrivial element F of R [X1, . . . , Xk], which
can be written as

F (X1, . . . , Xk) = f0 (X1, . . . , Xk−1) + f1 (X1, . . . , Xk−1)Xk + · · ·+ fm (X1, . . . , Xk−1)Xm
k .

There must be some nonzero fl, since if every fl is zero, F must be zero, a contradiction. Without loss
of generality, assume that fm is nonzero; if not, simply drop a sufficient number of identically-zero
higher terms. By the inductive hypothesis, fm (p1, . . . , pk−1) must also be nonzero.

Now, a sublemma.

Sublemma 1.3. For n ≥ 1 and k ∈ [1, n], pk can be expressed as a polynomial in s1, . . . , sk, and
the coefficient of sk in this representation is (−1)k−1k.
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Proof of sublemma. Fix n ≥ 1. For k = 1, the result is immediate, since p1 = s1. Next, assume that
the result holds up to, but not including, some k ∈ [1, n]. By the Newton identity,

pk = (−1)k−1ksk −

k−1
∑

i=1

(−1)i−1sk−ipi,

so the claim follows for this particular k from the inductive hypothesis. By induction, the lemma is
proven. �

By this lemma, () yields

F (h1 (X1) , . . . , hk (X1, . . . , Xk)) = f0 (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1)) + · · ·+

+fm (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1))
(

g (X1, . . . , Xk−1) + (−1)k−1kXk

)m
.

Here we have denoted the polynomial expression for pi in terms of the elementary symmetric poly-
nomials by hi (s1, . . . , si); we have written hk, somewhat more explicitly, as g (s1, . . . , sk−1) +
(−1)k−1ksk, where g is some polynomial. The right-hand side of this equation is a polynomial
in X1, . . . , Xk. Furthermore, there is a nonzero monomial in this polynomial with an m-th power
of Xk. To see this, first note that since we are working in a field of characteristic 0, the expres-
sion

(

g (X1, . . . , Xk−1) + (−1)k−1kXk

)m
contains the nonzero monomial (−1)m(k−1)kmXm

k . Since
fm (p1, . . . , pk−1) is not zero, fm (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1)) cannot be zero. It follows that
the product

fm (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1))
(

g (X1, . . . , Xk−1) + (−1)k−1kXk

)m

contains a nonzero monomial with an m-th power of Xk. It is clear that the sum

f0 (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1)) + · · ·+

+ fm−1 (h1 (X1) , . . . , hk−1 (X1, . . . , Xk−1))
(

g (X1, . . . , Xk−1) + (−1)k−1kXk

)m−1

cannot contain any m-th powers of Xk, so indeed, F (h1 (X1) , . . . , hk (X1, . . . , Xk)) contains a
nonzero monomial with an m-th power of Xk. In particular, F (h1 (X1) , . . . , hk (X1, . . . , Xk))
is nonzero. By the algebraic independence of the elementary symmetric polynomials, it follows
that F (h1 (s1) , . . . , hk (s1, . . . , sk)) is nonzero; that is, F (p1, . . . , pk) is nonzero. This proves that
p1, . . . , pk are algebraically independent. By the inductive hypothesis, we have now proven the
lemma. �

�

2. Appendix (by Julia)

I shall sketch a somewhat different approach which uses the same idea. To prove that p1, . . . , pn

are algebraically independent it is clearly enough to show that the monomials {pαn

n . . . pα1

1 }P

αi≤N

are linearly independent over R for any N .
Introduce lexicographic order on monomials. Let α = (αn, . . . , α1), β = (βn, . . . , β1) be multiin-

deces. Then
α ≥ β

iff there exists 1 ≤ i ≤ n such that αn ≥ βn, . . . , αi+1 ≥ βi+1 and αi > βi.

Lemma 2.1. (A stronger version of Nate’s Lemma 1.1).

sαn

n . . . sα1

1 =
∑

α≥β

cβ pβn

n . . . p
β1

1 ,

where cβ ∈ R and the coefficient by sαn

n . . . sα1

1 is non-zero.
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Proof. This is a direct consequence of Newton’s identities. Note that it holds for sk since

sk =
(−1)k−1

k
pk + lower terms .

Hence, the same is true for sαk

k . Now take the product. �

Now let’s do linear algebra. Consider a linear subspace in k[x1, . . . , xn] generated by all monomials

on pi of total degree ≤ N . By the degree of pβn

n . . . p
β1

1 I mean
∑

iβi. Consider a linear transformation
of this subspace onto the subspace generated by all monomials on si of total degree ≤ N GIVEN by
the formulas in Lemma 2.1. If we order our monomials lexicographically from lowest to highest, then
the statement of the lemma is equivalent to the following: the matrix of this linear transformation
is lower triangular with non-zero elements on the diagonal. Hence, the transformation is invertible.
Since the monomials on si are linearly independent by the algebraic independence of si, we conclude
that the monomials on pi are lineary independent.

Remark. We can also just count the dimension of the space generated by monomials on si of degree
≤ N (which is the same as the subspace generated by all monomials on xi of total degree ≤ N).
Again, Newton identities imply that this subspace is generated by the monomials on pi of degree
≤ N . But we have the same number of them as for si. Hence they must be linearly independent.


