WORKSHEET ON SYMMETRIC GROUPS

DUE FRIDAY, OCTOBER 23

1. Generators of S_n

Definition 1.1. Symmetric groups on n elements, denoted S_n, is a group of self-bijections (or permutations) of the set $X = \{1, 2, \ldots , n\}$, with multiplication defined by the composition.

Notation. Let $\sigma \in S_n$. Hence, $\sigma : \{1, 2, \ldots , n\} \to \{1, 2, \ldots , n\}$ is a bijection. The commonly used notation for the corresponding permutation is the following:

$$
\begin{pmatrix}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{pmatrix}
$$

Definition 1.2. A permutation $\sigma \in S_n$ is called a cycle if there exists a subset $\{x_1, \ldots , x_k\} \subset \{1, 2, \ldots , n\}$ such that $\sigma(x_i) = x_{i+1}$ (assuming $k + 1 = 1$), and $\sigma(y) = y$ for any $y \neq x_i$. The standard notation for such a permutation is (x_1, x_2, \ldots , x_k).

Two cycles (x_1, x_2, \ldots , x_k) and $(y_1, y_2, \ldots , y_\ell)$ are called disjoint if the sets $\{x_1, x_2, \ldots , x_k\}$ and $\{y_1, y_2, \ldots , y_\ell\}$ do not intersect.

Example 1.3.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 4 & 2 & 5
\end{pmatrix} = (234)
$$

Proposition 1.4. Any permutation $\sigma \in S_n$ can be written as a composition of disjoint cycles.

Remark 1.5. Such decomposition is unique up to the order of the factors.

Example 1.6.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 2 & 1
\end{pmatrix} = (15)(234)
$$

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 5 & 4
\end{pmatrix} = (12)(3)(45) = (12)(45)
$$

A cycle of length 1, such as (3) in the example above, just indicates that the corresponding element is fixed under the permutation. These are often skipped when permutation is written as a product of cycles.

We now describe the conjugacy classes of S_n (= the orbits under the action by conjugation of S_n on itself).

Theorem 1.7. Let $\sigma, \tau \in S_n$. Then σ and τ are conjugate if and only if their decompositions into disjoint cycles can be put into one-to-one correspondence such that the corresponding cycles are of the same length.

In particular, the conjugacy class of a single cycle consists of all cycles of the same length.
Remark 1.8. The group S_n is non-commutative for $n \geq 3$. Nonetheless, disjoint cycles always commute.

Definition 1.9. A transposition is a cycle of length 2.

Proposition 1.10. (Problem 3) The symmetric group S_n is generated by transpositions.

2. Alternating group

Note that the symmetric group S_n acts on polynomials on n variables. Namely, we define $$(\sigma f)(x_1, \ldots, x_n) = f(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)})$$

In short, $\sigma f = f \circ \sigma^{-1}$. For example, for $n = 3$, $\sigma = (12)$ a cycle of length 2,
$$\sigma(x_1^2x_2^5) = x_2^2x_1x_3^5 = x_1x_2^2x_3^5.$$

For $\sigma = (123)$,
$$\sigma(x_1^2x_2^5) = x_3^2x_1x_2^5 = x_1x_2^5x_3^2.$$

Let
$$f(x_1, \ldots, x_n) = \prod_{i<j}(x_i - x_j).$$

Question. Do you know for which matrix $f(x_1, \ldots, x_n)$ is the determinant?

Note that for any $\sigma \in S_n$, we have $\sigma f = \pm f$. Define a map
$$\text{Sgn} : S_n \to \mathbb{Z}/2\mathbb{Z}$$
via $\text{Sgn}(\sigma) = -1$ if $\sigma f = -f$ and $\text{Sgn}(\sigma) = 1$ otherwise.

Proposition 2.1. (Problem 4) Sgn is a group homomorphism.

Definition 2.2. A permutation $\sigma \in S_n$ is called even if $\text{Sgn}(\sigma) = 1$. Otherwise, it is called odd.

Corollary 2.3. The subset of all even permutations is a normal subgroup of S_n.

Definition 2.4. The subgroup of even permutations is called an alternating group A_n.

As we shall see in the following theorem, the sign of a permutation can be determined from its decomposition into transpositions.

Theorem 2.5. (Problem 5) (1) If $\tau \in S_n$ is a transposition, then $\text{Sgn}(\tau) = -1$
(2) A permutation σ is even if and only if it can be written as a product of even number of transpositions.

We now determine generators of A_n.

Theorem 2.6. (Problem 6) The group A_n is generated by 3-cycles of the form $(12i)$, $3 \leq i \leq n$.