Homework 1 for 506, Spring 2009
due Friday, April 10
R is a commutative ring with an identity element.
Problem 1. Let $R[x]$ be a polynomial ring with coefficients in R, and let $f=$ $a_{n} x^{n}+\cdots+a_{0} \in R[x]$. Prove the following:
[i] f is a unit in $R[x]$ if and only if a_{0} is a unit in R and a_{1}, \ldots, a_{n} are nilpotent;
[ii] f is nilpotent if and only if a_{0}, \ldots, a_{n} are nilpotent;
[iii] f is a zero divisor in $R[x]$ if and only if there exists $a \in R$ such that $a f=0$.

Problem 2. Show that in $R[x]$ the nilradical coincides with the Jacobson radical
Problem 3. Let \mathfrak{N} be the nilradical of R. Show that the following are equivalent:
[i] R has only one prime ideal;
[ii] Any element of R is either nilpotent or a unit;
[iii] R / \mathfrak{N} is a field.
Problem 4. Show that a local ring does not have non-trivial idempotents. (An idempotent is an element $a \in R$ such that $a^{2}=a$. Any ring has two trivial idempotents: 0 and 1.)

Exercises from class.

Problem 5. Give an example of a ring R such that R / \mathfrak{N} is not an integral domain.
Problem 6. Let $\mathfrak{a}, \mathfrak{b}$ be ideals in R. Show that if $\mathfrak{a}+\mathfrak{b}=(1)$ then $\mathfrak{a} \cap \mathfrak{b}=\mathfrak{a} \mathfrak{b}$.
Exercises on operations with ideals.
Problem 7.
(1) $\mathfrak{a} \subset(\mathfrak{a}: \mathfrak{b})$
(2) $(\mathfrak{a}: \mathfrak{b}) \mathfrak{b} \subset \mathfrak{a}$
(3) $((\mathfrak{a}: \mathfrak{b}): \mathfrak{c})=(\mathfrak{a}: \mathfrak{b} \mathfrak{c})=((\mathfrak{a}: \mathfrak{c}): \mathfrak{b})$
(4) $\left(\bigcap \mathfrak{a}_{i}: \mathfrak{b}\right)=\bigcap\left(\mathfrak{a}_{i}: \mathfrak{b}\right)$
(5) $\left(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}\right)=\bigcap_{i}^{i}\left(\mathfrak{a}: \mathfrak{b}_{i}\right)$

