Homework 2 for 506, Spring 2009

due Friday, April 17

Problem 1. Describe Spec R for

- (1) $R = \mathbb{Z}[x]$
- (2) $R = \mathbb{R}[x]$

Problem 2. Show that Spec R is irreducible if and only if \mathfrak{N} is prime. Remark - Corollary. If R is an integral domain then Spec R is irreducible.

Problem 3. Let $X = \operatorname{Spec} R$, $f \in R$. Show that the principal open set X_f is quasi-compact. (Recall that quasi-compact means that any open cover has a finite subcover.)

Problem 4. Prove that if R is Noetherian, and $\mathfrak{a} \subset R$ is an ideal, then among the primes containing \mathfrak{a} there are only finitely many that are minimal with respect to inclusion. These ideals are called *minimal prime ideals* over \mathfrak{a} .

Problem 5. Let R be a Noetherian ring.

- (1) Show that Spec R is a Noetherian space and describe irreducible components of Spec R in terms of prime ideals of R.
- (2) Show that $\dim \operatorname{Spec} R = \operatorname{Krull} \dim R$.
- (3) Let $\mathfrak{p}_x \subset R$ be a prime ideal, and $x \in \operatorname{Spec} R$ be the corresponding point in $\operatorname{Spec} R$. Express $\dim \bar{x} = \dim V(\mathfrak{p}_x)$ as an algebraic characteristic of the ideal \mathfrak{p}_x .

Exercises from class.

Exercise about radicals.

Problem 6.

- (1) $\mathfrak{a} \subset \operatorname{rad}(\mathfrak{a})$
- (2) $rad(rad(\mathfrak{a})) = rad(\mathfrak{a})$
- (3) $\operatorname{rad}(\mathfrak{ab}) = \operatorname{rad}(\mathfrak{a}) \cap \operatorname{rad}(\mathfrak{b}) = \operatorname{rad}(\mathfrak{a} \cap \mathfrak{b})$
- (4) $rad(\mathfrak{a}) = (1)$ if and only if $\mathfrak{a} = (1)$
- (5) $\operatorname{rad}(\mathfrak{a} + \mathfrak{b}) = \operatorname{rad}(\operatorname{rad}(\mathfrak{a}) + \operatorname{rad}(\mathfrak{b}))$
- (6) \mathfrak{p} is a prime ideal. Then $rad(\mathfrak{p}^n) = \mathfrak{p}$ for any n > 0

Exercises about irreducible spaces.

Problem 7. Show that for a topological space X to be irreducible is equivalent to any of the following

- (1) Any non-empty open subset is dense;
- (2) for any two non-empty open subsets $V, W \subset X$, we have $V \cap W \neq \emptyset$.

Problem 9. Let X be a topological space.

- (1) If $Y \subset X$ is irreducible, then \overline{Y} is irreducible;
- (2) any irreducible subset is contained in a maximal one.