Homework 2 for 506, Spring 2009

due Friday, April 17
Problem 1. Describe Spec R for
(1) $R=\mathbb{Z}[x]$

Solution. Let $\mathfrak{p} \in \mathbb{Z}[x]$ be a prime ideal. Consider 2 cases:
I. $\mathbb{Z} \cap \mathfrak{p}=(0)$
II. $\mathbb{Z} \cap \mathfrak{p} \neq(0)$

Case I. Let $f \in \mathfrak{p}$ be a polynomial such that
(i) $\operatorname{deg} f$ is minimal among all polynomials in \mathfrak{p},
(ii) the GCD of all coefficients of f is minimal among all polynomials in \mathfrak{p} of degree $\operatorname{deg} f$.
I claim that f is irreducible in $\mathbb{Z}[x]$. Indeed, suppose $f(x)=g(x) h(x)$. Since \mathfrak{p} is prime, we have that either $g \in \mathfrak{p}$ or $h \in \mathfrak{p}$. If $0<\operatorname{deg} g$, $\operatorname{deg} g<\operatorname{deg} f$, then this contradicts the minimality of $\operatorname{deg} f$. Hence, one of g, h must be a constant. Therefore, $f(x)=m h(x)$, where $m \in \mathbb{Z}$. Since $\mathfrak{p} \cap \mathbb{Z}=(0)$, and \mathfrak{p} is prime, we get $h(x) \in \mathfrak{p}$. This contradicts the assumption (ii) of minimality of GCD unless $m=1$. Hence, $f(x)$ is irreducible.
Case II. Let $\mathfrak{p} \cap \mathbb{Z} \neq(0)$. Then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z}. Let $\mathfrak{p} \cap \mathbb{Z}=(p)$, where p is a prime number. By one of the isomorphism theorems, we have

$$
\mathbb{Z}[x] / \mathfrak{p} \simeq \frac{\mathbb{Z}[x] /(p)}{\mathfrak{p} /(p)} \simeq \frac{\mathbb{F}_{p}[x]}{\mathfrak{p} /(p)}
$$

The ring $\mathbb{F}_{p}[x]$ is a PID (a polynomial ring over a field), hence, $\overline{\mathfrak{p}}=\mathfrak{p} /(p)$ is generated by some polynomial $\bar{f} \in \mathbb{F}_{p}[x]$. Moreover, \bar{p} is a prime ideal (since $\mathbb{F}_{p}[x] / \bar{p}=\mathbb{Z}[x] / \mathfrak{p}$ is an integral domain), therefore, \bar{f} is either zero or irreducible. If $\bar{f}=0$, then $\mathfrak{p}=(p)$. So we assume that $\bar{f} \neq 0$. Let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x]$ be a lifting of \bar{f} to \mathfrak{p} of minimal degree. We have $\left(a_{n}, p\right)=1$, for otherwise we can subtract a multiple of $p x^{n}$ from $f(x)$ and get a lifting of \bar{f} of lower degree. Moreover, we can assume that f is monic. Indeed, since $\left(p, a_{n}\right)=1$, there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha p+\beta a_{n}=1$. Replacing f with $\alpha p x^{n}+\beta f(x)$ we get a monic polynomial satisfying the same properties as f. Moreover, since f is a lifting of minimal degree, we have $\operatorname{deg} f=\operatorname{deg} \bar{f}$.

I claim that $\mathfrak{p}=(p, f)$. We clearly have $p, f \in \mathfrak{p}$, so we just need to show they generate the entire ideal. Suppose not. Then there exists $g \in \mathfrak{p} \backslash(p, f)$. Choose such a g of minimal possible degree, and let $g(x)=b_{m} x^{m}+\ldots+b_{0}$. Arguing as above for f, we can assume that g is monic.

Consider 2 cases:
(i) $m \geq n$. Then take $g^{\prime}(x)=g(x)-x^{m-n} f(x)$. We have $g^{\prime}(x) \in \mathfrak{p}$ but deg $g^{\prime}<$ $\operatorname{deg} g$. Hence, $g^{\prime}(x) \in(p, f)$. But then $g=g^{\prime}+x^{m-n} f \in(p, f)$. Contradiction.
(ii) $m<n$. Since $g \in \mathfrak{p}$, we have $\bar{g} \in \mathfrak{p} /(p)=(\bar{f})$. But since g is monic, we also have $\operatorname{deg} \bar{g}=\operatorname{deg} g=m<n=\operatorname{deg} f=\operatorname{deg} \bar{f}$. Hence, \bar{g} is in the ideal generated by \bar{f} only if $\bar{g}=0$. But then g is zero modulo p, and, hence, $g \in(p) \subset(p, f)$. Contradiction again.

We conclude that there are 3 possibilities for prime ideals:
(1) (0)-ideal,
(2) principal ideals $(f(x))$ where $f(x)$ is an irreducible polynomial in $\mathbb{Z}[x]$ or (p) where $p \in \mathbb{Z}$ is a prime,
(3) ideals generated by 2 elements ($p, f(x)$), where p is a prime integer, $f(x)$ is irreducible over \mathbb{F}_{p}.

The ideals of the form $(p, f(x))$ are maximal and correspond to closed points in $X=\operatorname{Spec} \mathbb{Z}[x]$. The space is irreducible and has dimension 2. The irreducible closed sets correspond to prime ideals, so they are of the form
$V((p, f(x))=$ closed point in X,
$V((0))=X$, or
$V((f(x)), V((p))$.
The latter sets are infinite since, for example, $(f(x)) \subset(p, f(x))$ for all p for which $f(x) \bmod p$ is still irreducible, and there are infinitely many of those. Hence, this is not a cofinite topology.

