Homework 2 for 506, Spring 2009

due Friday, April 17

Problem 1. Describe Spec *R* for (1) $R = \mathbb{Z}[x]$

Solution. Let $\mathfrak{p} \in \mathbb{Z}[x]$ be a prime ideal. Consider 2 cases:

I.
$$\mathbb{Z} \cap \mathfrak{p} = (0)$$

II. $\mathbb{Z} \cap \mathfrak{p} \neq (0)$

Case I. Let $f \in \mathfrak{p}$ be a polynomial such that

(i) deg f is minimal among all polynomials in \mathfrak{p} ,

(ii) the GCD of all coefficients of f is minimal among all polynomials in \mathfrak{p} of degree deg f.

I claim that f is irreducible in $\mathbb{Z}[x]$. Indeed, suppose f(x) = g(x)h(x). Since \mathfrak{p} is prime, we have that either $g \in \mathfrak{p}$ or $h \in \mathfrak{p}$. If $0 < \deg g, \deg g < \deg f$, then this contradicts the minimality of $\deg f$. Hence, one of g, h must be a constant. Therefore, f(x) = mh(x), where $m \in \mathbb{Z}$. Since $\mathfrak{p} \cap \mathbb{Z} = (0)$, and \mathfrak{p} is prime, we get $h(x) \in \mathfrak{p}$. This contradicts the assumption (ii) of minimality of GCD unless m = 1. Hence, f(x) is irreducible.

Case II. Let $\mathfrak{p} \cap \mathbb{Z} \neq (0)$. Then $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z} . Let $\mathfrak{p} \cap \mathbb{Z} = (p)$, where p is a prime number. By one of the isomorphism theorems, we have

$$\mathbb{Z}[x]/\mathfrak{p} \simeq \frac{\mathbb{Z}[x]/(p)}{\mathfrak{p}/(p)} \simeq \frac{\mathbb{F}_p[x]}{\mathfrak{p}/(p)}.$$

The ring $\mathbb{F}_p[x]$ is a PID (a polynomial ring over a field), hence, $\bar{\mathfrak{p}} = \mathfrak{p}/(p)$ is generated by some polynomial $\bar{f} \in \mathbb{F}_p[x]$. Moreover, \bar{p} is a prime ideal (since $\mathbb{F}_p[x]/\bar{p} = \mathbb{Z}[x]/\mathfrak{p}$ is an integral domain), therefore, \bar{f} is either zero or irreducible. If $\bar{f} = 0$, then $\mathfrak{p} = (p)$. So we assume that $\bar{f} \neq 0$. Let $f(x) = a_n x^n + \ldots + a_0 \in \mathbb{Z}[x]$ be a lifting of \bar{f} to \mathfrak{p} of minimal degree. We have $(a_n, p) = 1$, for otherwise we can subtract a multiple of px^n from f(x) and get a lifting of \bar{f} of lower degree. Moreover, we can assume that f is monic. Indeed, since $(p, a_n) = 1$, there exist $\alpha, \beta \in \mathbb{Z}$ such that $\alpha p + \beta a_n = 1$. Replacing f with $\alpha p x^n + \beta f(x)$ we get a monic polynomial satisfying the same properties as f. Moreover, since f is a lifting of minimal degree, we have $\deg f = \deg \bar{f}$.

I claim that $\mathfrak{p} = (p, f)$. We clearly have $p, f \in \mathfrak{p}$, so we just need to show they generate the entire ideal. Suppose not. Then there exists $g \in \mathfrak{p} \setminus (p, f)$. Choose such a g of minimal possible degree, and let $g(x) = b_m x^m + \ldots + b_0$. Arguing as above for f, we can assume that g is monic.

Consider 2 cases:

(i) $m \ge n$. Then take $g'(x) = g(x) - x^{m-n}f(x)$. We have $g'(x) \in \mathfrak{p}$ but deg $g' < \deg g$. Hence, $g'(x) \in (p, f)$. But then $g = g' + x^{m-n}f \in (p, f)$. Contradiction.

(ii) m < n. Since $g \in \mathfrak{p}$, we have $\overline{g} \in \mathfrak{p}/(p) = (\overline{f})$. But since g is monic, we also have deg $\overline{g} = \deg g = m < n = \deg f = \deg \overline{f}$. Hence, \overline{g} is in the ideal generated by \overline{f} only if $\overline{g} = 0$. But then g is zero modulo p, and, hence, $g \in (p) \subset (p, f)$. Contradiction again.

We conclude that there are 3 possibilities for prime ideals:

- (1) (0)-ideal,
- (2) principal ideals (f(x)) where f(x) is an irreducible polynomial in $\mathbb{Z}[x]$ or (p) where $p \in \mathbb{Z}$ is a prime,
- (3) ideals generated by 2 elements (p, f(x)), where p is a prime integer, f(x) is irreducible over \mathbb{F}_p .

The ideals of the form (p, f(x)) are maximal and correspond to closed points in $X = \operatorname{Spec} \mathbb{Z}[x]$. The space is irreducible and has dimension 2. The irreducible closed sets correspond to prime ideals, so they are of the form

V((p, f(x)) = closed point in X,

V((0)) = X, or

V((f(x)), V((p)).

The latter sets are infinite since, for example, $(f(x)) \subset (p, f(x))$ for all p for which $f(x) \mod p$ is still irreducible, and there are infinitely many of those. Hence, this is not a cofinite topology.