Homework 5 for 506, Spring 2009 due Friday, May 15

Problem 1.[10pt] Show that there is a canonical isomorphism $A/\mathfrak{a} \otimes_A M \simeq M/\mathfrak{a} M$.

Problem 2.[10pt] Let A be a local ring, and M, N be finitely generated A-modules. Show that if $M \otimes_A N = 0$ then either M = 0 or N = 0.

Problem 3.[10pt] Let M be a flat A-module, and B be an A-algebra. Show that $B \otimes_A M$ is a flat B-module.

Problem 4.[30pt] Let M be an A-module. The **support** of M, denoted Supp M, is a subset of Spec A defined as follows:

$$\operatorname{Supp} M = \{ \mathfrak{p} \in A \, | \, M_{\mathfrak{p}} \neq 0 \}.$$

Prove the following properties of supports:

- 1. (5pt) $M \neq 0 \Leftrightarrow \operatorname{Supp} M \neq \emptyset$.
- 2. (5pt) For an ideal $\mathfrak{a} \in A$, $V(\mathfrak{a}) = \operatorname{Supp} A/\mathfrak{a}$.
- 3. (5pt) For any short exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$, we have $\operatorname{Supp} M \subset \operatorname{Supp} M' \cup \operatorname{Supp} M''$.
- 4. (5pt) Supp $(\bigoplus M_i) = \bigcup$ Supp M_i
- 5. (5pt) If M is a finitely generated A-module, then Supp $M = V(\operatorname{ann}(M))$ (Here, $\operatorname{ann}(M) = \{a \in A \mid aM = 0\}$).
- 6. (5pt) If M, N are finitely generated, then $\text{Supp}(M \otimes N) = \text{Supp} M \cap \text{Supp} N$.
- 7. (*This is optional.*) Give an example of an A-module such that Supp M is not a closed subset in Spec A.

Exercises from class.

Problem 4.[5pt] Let $f \in A$. The canonical homomorphism $\phi : A \to A_f$ induces a continuous map $\phi^* : \operatorname{Spec} A_f \to \operatorname{Spec} A$. Show that ϕ^* induces a homeomorphism between $\operatorname{Spec} A_f$ and the principal open set X_f .

Problem 5.[5pt] Show that the canonical image of Spec $A_{\mathfrak{p}}$ in Spec A is the intersection of all open subsets containing \mathfrak{p} .