Homework 7 for 506, Spring 2009
due Friday, May 29
Throughout this homework, A is a commutative ring with identity.
The first three problems constitute a block with an ultimate goal to illustrate the non-uniqueness of the primary decomposition.
Problem 1. Let S be a multiplicatively closed subset of A. For an ideal \mathfrak{a} denote by $S(\mathfrak{a})$ an ideal of A with is the restriction of the ideal $S^{-1} \mathfrak{a}$ of $S^{-1} A$ (we can think of it as $\left.S(\mathfrak{a})=A \cap S^{-1} \mathfrak{a}\right)$. We always have an inclusion $\mathfrak{a} \subset S(\mathfrak{a})$, but if \mathfrak{a} is not a prime ideal, then it can happen that $\mathfrak{a} \neq S(\mathfrak{a})$.

Now let $S=A-\mathfrak{p}$ for a prime ideal $\mathfrak{p} \subset A$. The $n^{\text {ths }}$ symbolic power of \mathfrak{p} is the ideal

$$
\mathfrak{p}^{(n)} \stackrel{\text { def }}{=} S\left(\mathfrak{p}^{n}\right)
$$

(1) Show that $\mathfrak{p}^{(n)}$ is \mathfrak{p}-primary.
(2) Give an example of \mathfrak{p} such that \mathfrak{p}^{n} is a proper subset of $\mathfrak{p}^{(n)}$.

Problem 2. Let A be a Noetherian local ring, \mathfrak{m} be the maximal ideal of A. Show that A is Artinian if and only if there exists r_{0} such that $\mathfrak{m}^{r_{0}}=0$.

Problem 3. Let $(0)=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{n}$ be a minimal primary decomposition of the zero ideal in a Noetherian ring A, and let $\mathfrak{p}_{i}=\operatorname{rad}\left(\mathfrak{q}_{\mathfrak{i}}\right)$.
(1) Show that for any $i=1, \ldots, n$ there exists $r_{i}>0$ such that $\mathfrak{p}_{i}^{\left(r_{i}\right)} \subset q_{i}$.
(2) Let \mathfrak{q}_{i} be an isolated component of the primary decomposition. Show that there exists r_{i} such that $\mathfrak{q}_{i}=\mathfrak{p}_{i}^{(r)}$ for all $r \geq r_{i}$.
(3) Let \mathfrak{q}_{i} be an embedded component. Show that there are infinitely many r such that $\mathfrak{p}_{i}^{(r)}$ are all distinct.
(4) Conclude that if decomposition of zero above has an embedded \mathfrak{p}_{i}-primary component, then there are infinitely many distinct minimal primary decompositions which differ only in the \mathfrak{p}_{i}-primary component.

Problem 4. Show that P is a projective A-module if and only if $\operatorname{Hom}_{A}(P,-)$ is an exact functor.

Problem 5. Let I be an A-module. Prove that the following are equivalent:
(1) For any injective homomorphism $i: M^{\prime} \rightarrow M$ and any homomorphism $g: M^{\prime} \rightarrow I$ there exists $h: M \rightarrow I$ such that the following diagram commutes:

(2) The functor $\operatorname{Hom}_{A}(-, I): A-\bmod \rightarrow A-\bmod$ is exact
(3) Any exact sequence $0 \rightarrow I \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ splits

Hint: to prove 3) implies 1), take any diagram as in 1) and consider the module

$$
I \oplus_{M^{\prime}} M \stackrel{\text { def }}{=} \frac{I \oplus M}{\left\{\left(g\left(m^{\prime}\right),-i\left(m^{\prime}\right)\right) \mid m^{\prime} \in M^{\prime}\right\}}
$$

called the push-out of the diagram *:

Show that the bottom horizontal map (induced by i) is injective; then apply 3) to that map.

Definition. A module satisfying one of these conditions is called injective.

In the next problem we shall describe injective modules over \mathbb{Z}. Note that this is a bit more involved than describing projective modules which are just \mathbb{Z}^{n}.

Problem 6.

I. Prove the Baer's criterion for injective modules: An A-module I is injective if and only if for any ideal $\mathfrak{a} \subset A$ and any map $f: \mathfrak{a} \rightarrow I$, the map f can be extended to $h: A \rightarrow I$:

II. Show that an abelian group is injective (as a \mathbb{Z}-module) if an only if it is divisible. (An abelian group A is divisible if for any $a \in A$, and any $n \in \mathbb{Z}$ there exists $b \in A$ such that $a=n b$. For example, \mathbb{Q} or \mathbb{Q} / \mathbb{Z} are divisible.)

