Homework 7 for 506, Spring 2009 due Friday, May 29

Throughout this homework, A is a commutative ring with identity.

The first three problems constitute a block with an ultimate goal to illustrate the non-uniqueness of the primary decomposition.

Problem 1. Let S be a multiplicatively closed subset of A. For an ideal \mathfrak{a} denote by $S(\mathfrak{a})$ an ideal of A with is the restriction of the ideal $S^{-1}\mathfrak{a}$ of $S^{-1}A$ (we can think of it as $S(\mathfrak{a}) = A \cap S^{-1}\mathfrak{a}$. We always have an inclusion $\mathfrak{a} \subset S(\mathfrak{a})$, but if \mathfrak{a} is not a prime ideal, then it can happen that $\mathfrak{a} \neq S(\mathfrak{a})$.

Now let $S = A - \mathfrak{p}$ for a prime ideal $\mathfrak{p} \subset A$. The *n*^{ths} symbolic power of \mathfrak{p} is the ideal

$$\mathfrak{p}^{(n)} \stackrel{\mathrm{def}}{=} S(\mathfrak{p}^n).$$

- (1) Show that $\mathfrak{p}^{(n)}$ is \mathfrak{p} -primary.
- (2) Give an example of \mathfrak{p} such that \mathfrak{p}^n is a proper subset of $\mathfrak{p}^{(n)}$.

Problem 2. Let A be a Noetherian local ring, \mathfrak{m} be the maximal ideal of A. Show that A is Artinian if and only if there exists r_0 such that $\mathfrak{m}^{r_0} = 0$.

Problem 3. Let $(0) = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ be a minimal primary decomposition of the zero ideal in a Noetherian ring A, and let $\mathbf{p}_i = \operatorname{rad}(\mathbf{q}_i)$.

- (1) Show that for any i = 1, ..., n there exists $r_i > 0$ such that $\mathfrak{p}_i^{(r_i)} \subset q_i$. (2) Let \mathfrak{q}_i be an isolated component of the primary decomposition. Show that there exists r_i such that $\mathbf{q}_i = \mathbf{p}_i^{(r)}$ for all $r \ge r_i$.
- (3) Let q_i be an embedded component. Show that there are infinitely many r such that $\mathfrak{p}_i^{(r)}$ are all distinct.
- (4) Conclude that if decomposition of zero above has an embedded \mathfrak{p}_i -primary component, then there are infinitely many distinct minimal primary decompositions which differ only in the \mathfrak{p}_i -primary component.

Problem 4. Show that P is a projective A-module if and only if $\operatorname{Hom}_A(P, -)$ is an exact functor.

Problem 5. Let *I* be an *A*-module. Prove that the following are equivalent:

(1) For any injective homomorphism $i: M' \to M$ and any homomorphism $q: M' \to I$ there exists $h: M \to I$ such that the following diagram commutes:

$$0 \longrightarrow M' \xrightarrow{i} M \qquad *$$

- (2) The functor $\operatorname{Hom}_A(-, I) : \underline{A \operatorname{mod}} \to \underline{A \operatorname{mod}}$ is exact (3) Any exact sequence $0 \to I \to \overline{M \to M'' \to 0}$ splits

Hint: to prove 3) implies 1), take any diagram as in 1) and consider the module

$$I \oplus_{M'} M \stackrel{def}{=} \frac{I \oplus M}{\{(g(m'), -i(m')) \mid m' \in M'\}},$$

called the push-out of the diagram *:

Show that the bottom horizontal map (induced by i) is injective; then apply 3) to that map.

Definition. A module satisfying one of these conditions is called injective.

In the next problem we shall describe injective modules over \mathbb{Z} . Note that this is a bit more involved than describing projective modules which are just \mathbb{Z}^n .

Problem 6.

I. Prove the **Baer's criterion** for injective modules: An A-module I is injective if and only if for any ideal $\mathfrak{a} \subset A$ and any map $f : \mathfrak{a} \to I$, the map f can be extended to $h : A \to I$:

II. Show that an abelian group is injective (as a \mathbb{Z} -module) if an only if it is divisible. (An abelian group A is divisible if for any $a \in A$, and any $n \in \mathbb{Z}$ there exists $b \in A$ such that a = nb. For example, \mathbb{Q} or \mathbb{Q}/\mathbb{Z} are divisible.)