Homework 1 for 506, Spring 2016
due Wednesday, April 13
$R$ is a commutative ring with 1 unless specified otherwise.
The following problem should remind you of the Gauss lemma.
Problem 1. Let $R[x]$ be a polynomial ring with coefficients in $R$, and let

$$
f(x)=a_{n} x^{n}+\cdots+a_{0} \in R[x] .
$$

Prove the following:
(1) $f$ is a unit in $R[x]$ if and only if $a_{0}$ is a unit in $R$ and $a_{1}, \ldots, a_{n}$ are nilpotent;
(2) $f$ is nilpotent if and only if $a_{0}, \ldots, a_{n}$ are nilpotent.

Problem 2. Show that in $R[x]$ the nilradical coincides with the Jacobson radical.
Defn. A prime ideal $\mathfrak{p} \in R$ is minimal if it does not contain any proper prime ideals.

Example. If $R$ is an integral domain then the ONLY minimal prime is 0-ideal.
Problem 3. Let $R$ be a Noetherian ring. Show that there is one-to-one correspondence between irreducible components of $\operatorname{Spec} R$ and minimal prime ideals of $R$.
Note that this implies that a Noetherian ring has finitely many minimal prime ideals.
Problem 4. Show that for a non-empty topological space $X$ to be irreducible is equivalent to any of the following
(1) Any non-empty open subset is dense;
(2) Any two non-empty open subsets have a non-empty intersection.

Problem 5. Let $X$ be a topological space. Prove the following:
(1) If $Y \subset X$ is irreducible, then $\bar{Y}$ is irreducible;
(2) Any irreducible subset is contained in a maximal irreducible subset.

Problem 6. Describe $\operatorname{Spec} R$ for
(1) $R=\mathbb{R}[x] /\left(x^{n}\right)$ for some $n>0$
(2) $R=\mathbb{Z}[x]$ (here, just describe the points of this space)

Creative pictures are appreciated!

