WORKSHEET ON ARTINIAN RINGS

DUE FRIDAY, APRIL 22, BY 1PM IN JOSH'S MAILBOX

All rings are commutative with 1. This worksheet pursues two main results on Artinian rings:

(1) An Artinian ring is a Noetherian ring of dimension 0 (Thm 9).

(2) Structure theorem for Artinian rings (Thm 12)

Definition 1. An ideal I is nilpotent if $I^n = \{x_1 \cdots x_n \mid x_i \in I\} = (0)$ for some $n \in \mathbb{Z}$.

Lemma 2. Let R be a commutative Artinian ring. Show that J(R) is a nilpotent ideal.

Proof.

This result holds for non-commutative rings. It is likely that your proof would work without change, but you'd have to be more careful about multiplying from the left or from the right. We will skip all this and assume that the result of Problem 4 holds for not necessarily commutative rings.

Theorem 3 (Hopkins-Levitzki theorem).	(1) Let R be	e an Artinian	ring (not neces	sarily com-
mutative), and M be a finitely generat	ed R-module.	$Prove \ that \ M$	is a Noetherian	R-module.
(2) Conclude that an Artinian ring is No.	e therian.			

Proof. Exercise	
Lemma 4. Let R be an Artinian integral domain. Then R is a field.	
Proof. Exercise	
Proposition 5. Let R be an Artinian ring. Then any prime ideal is maximal.	
Proof. Exercise	
Corollary 6. Let R be an Artinian ring. Then the Krull dimension of R is zero.	
<i>Proof.</i> Exercise (one line proof though).	
Proposition 7. Let R be an Noetherian ring. Then $\mathfrak{N}(R)$ is a nilpotent ideal.	
Proof. Exercise	

Lemma 8. (1). Let \mathfrak{p} be a prime ideal in R. Then $rad(\mathfrak{p}^n) = \mathfrak{p}$. (2). Let $\mathfrak{p}_1, \mathfrak{p}_2$ be prime ideals in R which are also relatively prime. Then $\mathfrak{p}_1^n, \mathfrak{p}_2^m$ are relatively prime for any n, m > 0.

Proof. Exercise (use properties of radicals from class or from [AM] for a very short proof of 2)). \Box

Theorem 9. A ring R is Artinian if and only if it is Noetherian of Krull dimension 0.

Proof. Artinian implies Noetherian by Hopkins-Levitzki theorem; dimension is 0 by Cor. 6.

Now let R be a zero-dimensional Noetherian ring. By Problem 3 from Homework 1, R has finitely many minimal prime ideals; since dimension is zero, all prime ideals are maximal. Let $\{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_n\}$ be the set of all maximal ideals in R. Then $\mathfrak{N} = \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n = \mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n$. Hence, $\mathfrak{m}_1^{\ell} \cdot \ldots \cdot \mathfrak{m}_n^{\ell} = 0$ for a big enough ℓ by Prop. 7. Now show that R has a composition series and conclude that it is Artinian. Finish the proof

Corollary 10. Let R be a Noetherian local ring with a maximal ideal \mathfrak{m} . Then one of the following holds:

- (•) either $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for any n > 0
- (•) or there exists n such that $\mathfrak{m}^n = 0$. In the latter case, R is Artinian.

Proof. Exercise

In other words, a local Noetherian ring is Artinian if and only if the unique maximal ideal is nilpotent.

Lemma 11. Let R_1, R_2 be Artinian rings. Then $R_1 \times R_2$ is also Artinian.

Proof. Exercise

Theorem 12. Any Artinian ring decomposes uniquely (up to isomorphism) as a direct product of finitely many local Artinian rings.

Proof. Exercise (don't forget Chinese Remainder theorem).

Remark 13. For an Artinian ring R, Spec R is just a union of finitely many points. Zariski topology becomes a discrete topology. Spec R is irreducible if and only if R is local.