Homework 3 for 506, Spring 2016

due Friday, April 29

R is a commutative ring with 1 unless specified otherwise.

Problem 1. Let $X = \operatorname{Spec} R$. Show that the principal open set X_f is quasi-compact. (There is a hint in [AM], Ch. I, Ex. 17.)

Problem 2. Let $k = \mathbb{F}_q$ be a field of q elements. Give an example of $f \in k[x,y]$ such that for every $\alpha \in k$, the ring A = k[x,y]/f is not finitely generated as a module over $k[X - \alpha Y]$.

In other words, the proof we gave for Noether Normalization Lemma really fails for finite fields.

Problem 3. Let n be a square-free integer, and let $k = \mathbb{Q}(\sqrt{n})$. Show that $a + b\sqrt{n}$ is integral over \mathbb{Z} if and only if either $a, b \in \mathbb{Z}$ or $n \equiv 1 \mod 4$ and $a, b \in \frac{1}{2}\mathbb{Z}$.

Problem 4. Let $R \subset S$ be a finite ring extension and let $\mathfrak{p} \subset R$ be a prime ideal. Prove that there exists a prime ideal $\mathfrak{q} \in S$ such that $\mathfrak{q} \cap R = \mathfrak{p}$.

In this case, we say that $\mathfrak q$ lies over $\mathfrak p$. We'll prove later that there are only finitely many ideals $\mathfrak q$ "lying over" $\mathfrak p$.