Homework 4 for 506, Spring 2016

due Friday, May 13

Throughout this homework, k will be a field.

Problem 1. Let $V \subset \mathbb{A}^n_k, W \subset A^m_k$ be algebraic sets.

- (1) Show that $f:V\to W$ is a regular morphism if and only if there exists $F_1(x_1,\ldots,x_n),\ldots,F_m(x_1,\ldots,x_n)\in k[x_1,\ldots,x_n]$ such that for any $v\in V$, $fv) = (F_1(v), \dots, F_m(v)).$
- (2) Prove that a regular morphism $f: V \to W$ is continuous in Zariski topology.

Problem 2. Let V, W be affine algebraic varieties. For $f: V \to W$, a regular morphism, denote by $f^*: k[W] \to k[V]$ the map of algebras defined by the formula

$$f^*(\phi) = \phi \circ f$$

for any $\phi \in k[W]$.

- (1) Show that f^* is an algebra homomorphism.
- (2) Show that the correspondence $f \mapsto f^*$ defines a bijection between the set of regular morphisms between V and W and algebra homomorphisms between k[W] and k[V].
- (3) Show that f is a regular isomorphism of varieties if and only if f^* is an algebra isomorphism.

Problem 3. Describe irreducible components of the following algebraic sets in \mathbb{A}^3_k :

- (1) V((f,g,h)) where $f=y^2-xz, g=x^4-yz, h=z^2-x^3y$. (2) $V((xz-y^2,z^3-x^5))$