WORKSHEET ON PRIMARY DECOMPOSITION, MATH 506, SPRING 2016

DUE FRIDAY, MAY 27

All rings are commutative with 1. Please supply proofs/justifications (and one statement) for all theorems/lemmas/propositions and examples. Remarks are given just for your information, but do pay attention to them too.

1. Primary ideals

Definition 1.1. An ideal $\mathfrak{a} \in R$ is called primary if for any $a b \in \mathfrak{a}$, we have either $a \in \mathfrak{a}$ or $b^{n} \in \mathfrak{a}$ for some $n>0$.

Lemma 1.2. An ideal \mathfrak{a} is primary if and only if $R / \mathfrak{a} \neq 0$ and any zero divisor in R / \mathfrak{a} is nilpotent.
Let I be an ideal in R, and let $\phi: R \rightarrow R / I$ be the canonical projection. Formulate and prove an addition to the "Correspondence theorem" concerning primary ideals.

Theorem 1.3. (Extension of the Correspondence theorem for ideals)
Lemma 1.4. Let \mathfrak{a} be a primary ideal. Then $\operatorname{rad}(\mathfrak{a})$ is prime.
Remark 1.5. The converse is not true. See Example 1.9.
Definition 1.6. If \mathfrak{a} is a primary ideal such that $\operatorname{rad}(\mathfrak{a})=\mathfrak{p}$ then \mathfrak{a} is called \mathfrak{p}-primary.
Proposition 1.7. If $\operatorname{rad}(\mathfrak{a})=\mathfrak{m}$ is a maximal ideal then \mathfrak{a} is \mathfrak{m}-primary.
Corollary 1.8. If \mathfrak{m} is maximal then \mathfrak{m}^{n} is m-primary.
Example 1.9. From Worksheet 1 we know that $\operatorname{rad}\left(\mathfrak{p}^{n}\right)=\mathfrak{p}$ for any prime ideal \mathfrak{p}. And yet, the above Corollary does not hold for arbitrary prime ideals. Give an example of a prime ideal \mathfrak{p} such that \mathfrak{p}^{n} is NOT a primary ideal.
Lemma 1.10. A finite intersection of \mathfrak{p}-primary ideals is \mathfrak{p}-primary.
Motivational example. Let $R=\mathbb{Z}$. An ideal (a) if (p)-primary if and only if $a=p^{n}$. Hence, the unique factorization in \mathbb{Z} can be restated as follows: any ideal can be decomposed uniquely as a product (=intersection) of primary ideals. This turns out to be the correct formulation to generalize to arbitrary Noetherian rings.

2. Primary decomposition

2.1. Existence. From now on assume that R is Noetherian. We'll show that any ideal has a primary decomposition, that is, can be expressed as an intersection of primary ideals.
Definition 2.1. An ideal \mathfrak{a} is called irreducible if $\mathfrak{a}=I \cap J$ for two ideals I, J, implies that $\mathfrak{a}=I$ or $\mathfrak{a}=J$.

Lemma 2.2. Any ideal in a Noetherian ring is a finite intersection of irreducible ideals.
Definition 2.3. Let \mathfrak{a} be an ideal in R. We say that \mathfrak{a} has a primary decomposition if \mathfrak{a} is a finite intersection of primary ideals.
Theorem 2.4. (Existence). Any ideal in a Noetherian ring has a primary decomposition.
2.2. Uniqueness (sort of). Let $\mathfrak{a}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{\ell}$ be a primary decomposition. By Lemma 1.10 we can replace the ideals with the same radical with their intersection and still have a primary decomposition. We can also make the decomposition efficient by getting rid of irrelevant ideals - namely, the ones that contain the intersection of the rest of them. We say that a primary decomposition $\mathfrak{a}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{\ell}$ is minimal if
(1) $\operatorname{rad} \mathfrak{q}_{i}$ are pair-wise distinct,
(2) $\bigcap_{j \neq i} \mathfrak{q}_{i} \not \subset \mathfrak{q}_{j}$ for any $j, 1 \leq j \leq \ell$.

Definition 2.5. If $\mathfrak{a}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{\ell}$ is a minimal primary decomposition, then the prime ideals $\mathfrak{p}_{i}=\operatorname{rad}\left(\mathfrak{q}_{i}\right)$ are called the associated primes for \mathfrak{a}. The set of all primes associated with \mathfrak{a} is denoted $\operatorname{Ass}(\mathfrak{a})$.

Recall that the quotient ideal $(\mathfrak{a}: \mathfrak{b})$ is defined as $\{y \in R \mid y \mathfrak{b} \subset \mathfrak{a}\}$. For $x \in R$, we use a streamlined notation $(\mathfrak{a}: x)$ for $(\mathfrak{a}:(x))$.

Lemma 2.6. (1) "Quotients commute with intersections": $\left(\bigcap_{i} \mathfrak{a}_{i}: \mathfrak{b}\right)=\bigcap_{i}\left(\mathfrak{a}_{i}: \mathfrak{b}\right)$
(2) Let \mathfrak{q} be a \mathfrak{p}-primary ideal in R, and let $x \in \mathfrak{q}$. Then $(\mathfrak{q}: x)=1$
(3) Let \mathfrak{q} be a \mathfrak{p}-primary ideal in R, and let $x \notin \mathfrak{q}$. Then $\operatorname{rad}(\mathfrak{q}: x)=\mathfrak{p}$.

The associated primes can be equivalently defined as follows:
Proposition 2.7. A prime ideal \mathfrak{p} is an associated prime for \mathfrak{a} if and only if there exists $a \in R / \mathfrak{a}$ such that $\mathfrak{p}=\operatorname{rad}\left(\operatorname{Ann}_{R}(a)\right)$.
Proof. Hint: express $\operatorname{rad}\left(\operatorname{Ann}_{R}(a)\right)$ as a quotient ideal and use Lemma 2.6.
Theorem 2.8. (Uniqueness) The set of associated primes does not depend on the primary decomposition.
Example 2.9. The primary decomposition itself is not unique. Let $R=k[x, y]$, and let $\mathfrak{a}=\left(x^{2}, x y\right)$. Show that \mathfrak{a} has two minimal primary decompositions:

$$
\mathfrak{a}=(x) \cap\left(x^{2}, x y, y^{2}\right)=(x) \cap\left(x^{2}, y\right)
$$

Determine the set of associated primes of \mathfrak{a}.

3. Geometric interpretation

Let $\mathfrak{a}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{\ell}$ be a primary decomposition, and let $\operatorname{rad}\left(\mathfrak{q}_{i}\right)=\mathfrak{p}_{i}$. Then $V(\mathfrak{a})=V\left(\mathfrak{p}_{1}\right) \cup$ $\ldots \cup V\left(\mathfrak{p}_{\ell}\right)$.
Proposition 3.1. There exists a subset $\left\{\mathfrak{p}_{i_{1}}, \ldots, \mathfrak{p}_{i_{N}}\right\} \subset\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{\ell}\right\}$ such that

$$
V(\mathfrak{a})=V\left(\mathfrak{p}_{i_{1}}\right) \cup \ldots \cup V\left(\mathfrak{p}_{i_{N}}\right)
$$

and $V\left(\mathfrak{p}_{i_{1}}\right), \ldots, V\left(\mathfrak{p}_{i_{N}}\right)$ are precisely the irreducible components of $V(\mathfrak{a})$.
Definition 3.2. The primes described in the proposition are called the minimal associated primes of \mathfrak{a}. The other primes appearing as radicals of the ideals in a primary decomposition are called the embedded associated primes.

Minimal associated primes are simply the primes which are minimal among all primes containing \mathfrak{a}. There is one-to-one correspondence:

$$
\text { Minimal associated primes of } \mathfrak{a} \leftrightarrow \text { Irreducible components of } V(\mathfrak{a})
$$

Example 3.3. Example of an embedded prime. Consider the ideal \mathfrak{a} from Example 2.9.
(1) Compute $V(\mathfrak{a})$.
(2) Which associated primes are minimal and which are embedded?
(3) Note that for the embedded prime \mathfrak{p}, you have $V(\mathfrak{p})$ a proper subset of an irreducible component of $V(\mathfrak{a})$ (here, the entire $V(\mathfrak{a})$). Hence, the name "embedded" - the corresponding algebraic set embeds into a bigger irreducible subset.

From the geometric prospective, we do not "see" the embedded primes, only the minimal ones. The minimal associated primes are also called isolated associated primes.
Remark 3.4. The primary decomposition can be done more generally for R-modules. What we did here was a special case of modules of the form R / \mathfrak{a}.

