Homework 2 for "Algebraic Structures I", Autumn 2010 due Friday, October 29

Problem 1. Classify irreducible modules for sl_2 for

- (1) k an arbitrary field of characteristic 0
- (2) k a field of positive characteristic p

Problem 2. Show that the functor $U: Lie \to Ass$ that associates to a Lie algebra its universal enveloping algebra is left adjoint to the functor $F: Ass \to Lie$ that sends an associative algebra A to the Lie algebra A^{Lie} .

Problem 3. Let A be a Hopf algebra, and let $\nabla : A \to A \otimes A$ be the comultiplication. An element $a \in A$ is called primitive if $\nabla(a) = a \otimes 1 + 1 \otimes a$. The subspace of all primitive elements is denoted Prim(A). Show that Prim(U(g)) = g for any Lie algebra g over a field k of characteristic 0.

Problem 4. Let x, y be commuting semisimple elements in gl_n . Show that x + y is semisimple. Give an example when this fails if x, y do not commute.

1