
SIMPLE ROOTS, CARTAN MATRICES AND DYNKIN DIAGRAMS

SNOW CLOSURE LECTURE NOTES FOR 581C

Abstract. We show that if Φ is an irreducible root system then at most two different root lengths can occur

in Φ. We define Cartan matrix and Dynkin diagram associated to a root system and state the Classification
theorem to be proven next week. The material covered can be found in [H], sections 10.4, 11.1, 11.2, 11.3,

11.4.

2. Simple Roots, continuation

We fix a base Π ⊂ Φ, Π = {α1, . . . , αn}, so that αi, 1 ≤ i ≤ n, are simple roots.

Definition 2.1 (Partial order on Φ). Let α, β ∈ Φ. We say α � 0 iff α ∈ Φ+, and α ≺ 0 iff α ∈ Φ−.
We also say α � β iff α − β is a sum of positive roots (equivalently, simple roots).

Remark 2.2. Note that it can happen that α � β but α − β is NOT a root, only a sum of positive roots.
Find an example in B2 or G2.

Fact 2.1. Suppose Φ is irreducible. Then there exists a unique maximal root with respect to the partial order
�. Moreover, if α =

∑

ciαi then all coefficients ci are non-zero.

Definition 2.3. Let α =
∑

ciαi be a root. Then htα =
∑

ci is called the height of α.

Exercise*. Determine maximal roots for all irreducible root systems of rank 2.

Remark 2.4. Recall from last time that any root is an image of a simple root under the action of the Weyl
group.

Lemma 2.5. Let Φ be irreducible. Then E does not have non-trivial proper W -invariant subspaces (that is,
E is an irreducible representation of W ).

Proof. Proof by Contradiction. Suppose E1 ⊂ E is a proper, non-trivial W -invariant subspace. Let E⊥
1 be

the orthogonal complement to E1 with respect to the bilinear form we have on E. Then E = E1 × E⊥
1 . I

claim that for any root α we have that either α ∈ E1 or α ∈ E⊥
1 .

Suppose α 6∈ E1. Let Pα be the hyperplane perpendicular to α. We’ll show that E1 ⊂ Pα. Suppose not.
Since E1 is W -invariant, we have σα(E1) = E1. If there exists λ ∈ E1 such that λ 6∈ Pα, then we have that

σ(λ) − λ = −〈λ, α〉α ∈ E1.

Since λ 6∈ Pα, we have that 〈λ, α〉 6= 0. Therefore, a non-zero multiple of α is in E1, and, hence, α itself is
in E1. This contradicts our assumption and we conclude that E1 ⊂ Pα. This, in turn, implies that α ⊥ E1.
Hence, α ∈ E⊥

1 . This proves the claim.
Let Φ1 = {α ∈ E1} and Φ2 = {α ∈ E⊥

1 }. We just showed that Φ = Φ1tΦ2 which contradicts irreducibility
of Φ. �

Proposition 2.6. Let Φ be an irreducible root system. Then at most two different root lengths occur in Φ.

Proof. Let α, β ∈ Φ, β 6= ±α. Since W acts irreducibly on E by the lemma, we have that the orbit of α,
Wα, generates E as a vector space. This implies that we can find w ∈ W such that (w(α), β) 6= 0. Replacing
α with w(α) or −w(α) (which does not change the length), we can assume that (α, β) > 0.
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Recall the table we constructed after making “Observation 1” in this chapter that noted that 〈α, β〉 =
0,±1,±2,±3 (we assumed for the table that ||β|| ≥ ||α||):

〈α, β〉 〈β, α〉 φ cos φ ||β||
||α||

0 0 π/2 0 ??

1 1 π/3 1/2 1
−1 −1 2π/3 −1/2 1

1 2 π/4 1/
√

2
√

2

−1 −2 3π/4 −1/
√

2
√

2

1 3 π/6
√

3/2
√

3

−1 −3 5π/6 −
√

3/2
√

3

It follows that ||β||2

||α||2
takes values 1, 2, 3, 1/2, 1/3. Fix α and go over all roots β in Φ.

1. Suppose we find β1, β2 such that ||β1||
2

||α||2
= 2 or 1/2 and ||β2||

2

||α||2
= 3 or 1/3. Then ||β1||

2

||β2||2
= 2

3
, 3

2
, 6 or 1

6
.

But from our table we know that this is not possible.

2. Now suppose ||β1||
2

||α||2 = 2 and ||β2||
2

||α||2 = 1

2
. Then ||β1||

2

||β2||2
= 4. Contradiction again. Similarly for 3 and 1/3.

We conclude that the values of ||β1||
2

||α||2 can be 1 and at most one more value from {2, 1/2, 3, 1/3}. Therefore,

only one root length besides ||α|| can occur. �

Remark 2.7. With just a little more work one can show that all roots of the same length are conjugate
under the action of W .

Definition 2.8. In an irreducible root system shorter roots are called short, and longer roots are called
long.

Remark 2.9. One can show that the maximal root is always long (check for yourself for all rank 2 cases)

3. Cartan Matrices and Dynkin Diagrams

As before, we fix a base Π = {α1, . . . , αn} of Φ. Moreover, we now also fix the order of simple roots.

Definition 3.1. Let aij = 〈αi, αj〉. The matrix (aij) is called the Cartan matrix of Φ.

Remark 3.2. The Cartan matrix is non-singular. We have essentially proved this earlier at some point.
Please convince yourself that it follows from non-degeneracy of the bilinear form.

Example 3.3. Here are the Cartan matrices for rank 2 root systems. The ones for B2 and G2 depend on
the order of simple roots. Figure out which order was chosen for each one (with respect to the labels α, β
on the pictures that we had on the board).

A1 × A1

[

2 0
0 2

]

A2

[

2 −1
−1 2

]

B2

[

2 −2
−1 2

]

G2

[

2 −1
−3 2

]

Theorem 3.4. The Cartan matrix determines the root system Φ up to isomorphism.

We skip the proof of this theorem which can be found in [H, 11.1]. It should be more intuitively clear if
we formulate the statement as follows:

Let (Φ, E), (Φ′, E′) be two root systems of the same rank with simple roots Π = {α1, . . . , αn}, Π′ =
{α′

1, . . . , α
′
n} respectively. Suppose aij = a′

ij for all pairs i, j. Then the map

αi 7→ α′
i

extends uniquely to an isomorphism of root systems Φ ' Φ′.

It is not too hard to reconstruct the root system from its Cartan matrix. Humphreys describes how to
do this inductively on page 56.
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Definition 3.5 (Coxeter graph.). Let Φ be a root system of rank n, Π = {α1, . . . , αn} be simple roots, (aij)
be the Cartan matrix. The Coxeter graph of Φ is a graph on n vertices labeled with α1, . . . , αn such that
the number of edges connecting αi and αj equals aijaji = 〈αi, αj〉〈αj, αi〉.
Remark 3.6. There can be at most three edges between any two vertices of a Coxeter graph associated
to Φ.

Note that if αi, αj are connected by exactly one edge then they must have the same length (since
〈αi, αj〉〈αj, αi〉 = 1), and, vice versa, if they have the same length, they are connected by at most on
edge. So vertices marked by simple roots of different length are connected by 2 or 3 edges. This, in partic-
ular, implies that if the Coxeter graph is simple, it determines completely the Cartan matrix and the root
system.

Definition 3.7 (Dynkin diagram). The Dynkin diagram of a root system Φ is a partially directed Coxeter
graphs with directions assigned to certain arrows as follows: if αi and αj are connected by two or three
edges, then we put a direction on the edges going from the long to the short root.

Example 3.8. Dynkin diagrams in rank 2.

A1 × A1 u u

A2 u u

B2 u u〉

G2 u u〈

Proposition 3.9. Dynkin diagram completely determines the Cartan matrix.

Proof. Exercise �

Example-Exercise. Reconstruct the Cartan matrices for Dynkin diagrams of the types F4 and D4:

F4 u u u u〉

D4 u

u

u

�
�

�

@
@

@

Theorem 3.10 (Cartan-Killing classification). Let Φ be an irreducible root system of rank n. Then its
Dynkin diagram must be one of the following:

An u u u . . . . . . u u n ≥ 1

Bn u u . . . . . . u u u〉 n ≥ 2

Cn u u . . . . . . u u u〈 n ≥ 3
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Dn u u . . . . . . u u

u

u

���

HHH

n ≥ 4

E6 u u u u u

u

E7 u u u u u u

u

E8 u u u u u u u

u

F4 u u u u〉

G2 u u〈

Moreover, root systems corresponding to different diagrams are pair-wise non-isomorphic.

Remark 3.11. In [H2], an abstract Coxeter graph is defined as a simple graph with labels assigned to edges.
To make the transition, we have to replace double edges with single edges labeled with 4 and triple edges
with single edges labeled with 6. Note that this is a very meaningful labeling. In each case, if the label is
m, then the angle between the corresponding simple roots equals π − π

m
.
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