THE STABLE CATEGORY OF A FROBENIUS CATEGORY IS
TRIANGULATED

CODY HOLDAWAY, KEVIN ZATLOUKAL

1. ExacT CATEGORIES

Let A be an additive category. A sequence
A-l.p-2.¢

is ezact if f is a kernel of g and g is a cokernel of f. Note: f is monic and g is epi since
kernels and cokernels are monic and epi respectively. A morphism of exact sequences is a
triple of morphisms (¢, 1, 0) such that

A-t.p_*. ¢

N
AlﬁB/ﬁCl

g

commutes. A morphism (¢, 1, 6) is an isomorphism if the three morphisms are isomorphisms.

Definition 1. Let A be an additive category and £ a class of exact sequences in A. Given
an exact sequence

A-l.p-t.¢
in £, f is called an inflation (admissible monomorphism) and g is a deflation (admissible
epimorphism). An exact sequence in £ will be called a conflation and will sometimes be
denoted as (f,g). The pair (A, &) will be called exact (or, more breifly, A is exact) if the
following axioms hold:

(1) Any sequence A — B — C' isomorphic to a sequence in £ is in £.
(2) For any pair of objects A, B in A, the canonical sequence

A—~AeB-"2-B
isin &.
(3) The composition of two deflations is again a deflation.

(4) The composition of two inflations is again an inflation.
(5) If f: A — C is a deflation and g : B — C' is any map then the pullback exists

AecB-L-B
s
A C

with f" a deflation.
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(6) If f: C' — A is an inflation and g : C'— B is any map, then the pushout exists

c—7T . a
QL lg’
B7B®CA

with f’ an inflation.

(7) Let f : B — C be a map with a kernel. If there is a map g : A — B such that
fg: A— Cis a deflation then f is a deflation.

(8) Let f: A — B be a map with a cokernel. If there is a map g : B — C' such that gf
is an inflation then f is an inflation.

Remark. Bernhard Keller [1] has shown (A4, £) is exact if and only if the identity map of the
zero object is a deflation and (1), (3), (4), (5) and (6) above hold.

In any additive category, A®0 = A and we have the canonical exact sequences A = A — 0
and 0 - A = A. Hence, identities are always conflations and deflations. For any morphism
f: A— B we get commutative diagrams

0 0—=A=——4
N
0 0—=A——B

!

with the top rows conflations. Hence, if f : A — B is an isomorphism then the bottom rows
are also conflations by (1) of the definition of an exact category.

Example 1. (1) Any abelian category is canonically an exact category by letting £ be
the class of all short exact sequences.
(2) Let A be an abelian category. Let &£ be the class of all split exact sequences. Then
(A, ) is an exact category.
(3) If (A, &) is an exact category then (A% E) is an exact category where £ is the
class of all sequence C? — B’ — A such that A > B — C'isin £.

Example 2. Let Ch(.A) be the category of chain complexes over an abelian category. Let
& be the class of all sequences

0 A-l.p % ¢ 0

such that A, — B, — C,, are split exact sequences for all n. Then (Ch(A),€&) is an exact
category.

Lemma 1. Consider a diagram
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in an exact category with the second row a conflation. Then this diagram can be completed
to a commutative diagram

AL Ba.E-E
|-
A f

B—7 .(C

1

g
with all rows conflations.

Proof. Consider the two maps f and h. Since f is an inflation, (6) of definition 1 means the
pushout D &4 B exists with ¢; an inflation. Hence, there is a morphism n: D @4 B — F
such that D — D @4 B — F is a conflation. In particular, 7 is a cokernel of ¢; so the pair
(F,n) is unique up to isomorphism. Hence, we just need to show ¢’ exists and that (C,¢') is
a cokernel of ¢;.

Consider the pair of maps (¢,0) with 0 : D — C. Since gf = 0 = 0h we know there is a
unique map ¢ : D ®* B — C such that g = ¢t and 0 = ¢/t;. Suppose ¢ : D@4 B — W
is a map for which ¢it; = 0. Then @iof = pr1h = 0 so there is a unique map a: ¢ — W
such that s = ag. Hence, (¢ — ag')t; = 0 and (¢ — ag')ie = pto — ag’ts = 0 and we find
¢ —ag’ = 0. Thus, ¢ factors uniquely through ¢’ showing (C,¢’) is a cokernel of ¢;. The
proof for the upper row is similar. O

Definition 2. If (A,€) and (A, &) are exact categories, an exact functor F': A — A’ is
a functor which takes conflations in A to conflations in A’. Exact functors are necessarily
additive.

Lemma 2. Let

A-l.p-f.¢
be an exact sequence in an additive category A. Then for any object D, the sequences of
abelian groups

0 —— Hom(C, D)~~~ Hom(B, D) —~ Hom(A, D)

0 — Hom(D, A) —— Hom(D, B) —~ Hom(D, C)

are exact. Moreover, if there exists an f' : B — A (¢ : C — B) such that f'f = ida
(99" =id¢) then f* (g.) is surjective.

Proof. Since g is epi, g* will be monic as g*(¢) = @g can be zero only when ¢ = 0. Also,
f*g* = (gf)* = 0. Suppose f*(p) = ¢f = 0 where ¢ : B — D. Since (f,g) is an exact
sequence we know ¢ is a cokernel of f so there is a unique map ¢’ : C' — D such that
v = ¢'g = g*(¢'). Hence, the kernel of f* is contained in the image of ¢g*. If f'f = ida
then f*(f')* = idom(a,py showing f* is surjective. The proof for the second sequence is
similar. O
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Lemma 3. Let A be an additive category with
Aloptoc
an exact sequence. Then the following are equivalent
(1) There is a morphism f': B — A such that f'f =ida.

(2) There is a morphism ¢’ : C — B such that g¢' = id¢.
(3) There is an isomorphism ¢ : B — A @ C which makes the diagram

(1.1) A—t.p—* . ¢
| ]
A—LA>A@CTC>C

commute.

Proof. (1)=(3). If f" exists let ¢ : B — A @ C be the map ¢ = taf’ + tcg. This definition
makes diagram 1.1 commute. For any object D, applying Hom(—, D) to diagram 1.1 gives
the diagram

0 — Hom(C, D) Hom(B, D) Hom(A, D) — 0

| - |

0—>H0mCD)—>Hom(A@C’D)—>HomAD) —0
Tc

which commutes and has exact rows. By the 5-lemma for abelian groups we find ¢* is an iso-
morphism. Therefore, ¢ induces a natural isomorphism ¢* : Hom(A & C, —) — Hom(B, —).
Hence, ¢ is an isomorphism by the Yoneda embedding theorem.

(2)=(3). Similar to (1)=(3).

(3)=(1)&(2). Just define f' = s and ¢’ = p tic. O
Definition 3. Let (A, ) be an exact category.
(1) An object I € A is E-injective (or injective for short) if the functor
Homy(—,I): A” — Ab

1s exact. Here the category Ab of abelian groups has the canonical exact structure.
(2) An object P € A is E-projective (or projective) if the functor

Homyu(P,—): A— Ab

18 exact.
(3) A has enough injectives if any object A fits into a conflation

A—-IT—B

with I injective.
(4) A has enough projectives if any object A fits into a conflation

B—P—A
with P projective.
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Example 3. In the category of modules over a ring R with the usual exact sequences the
projectives and injectives have their usual interpretations. Module categories have enough
projectives and enough injectives.

Example 4. If we define the conflations in a module category to be the split short exact
sequences then every object is projective and injective. Trivially then, module categories
with split exact sequences as conflations have enough injectives and projectives.

Proposition 1. Let (A, E) be an exact category. Let I be an object of A. Then the following
are equivalent

(1) I is an injective object.
(2) For any diagram

A-l.p-t.¢
/
/
hl L0 A
with the top row a conflation, there is a morphism h' : B — I such that h'f = h.
(3) Any conflation I — B — C' beginning with I splits, i.e, there is a map h : B — I
such that hf =id;.

Proof. (1)=(2). Applying Hom(—, I) to the conflation yields the exact sequence of abelian
groups

0 —— Hom(C, I) —~~ Hom(B, I) —— Hom(A, I) — 0.

Since f* is surjective and h € Hom(A, I) there is an b’ € Hom(B, I) such that h'f = f*(h') =
h.

(2)=(3). Let

--p-*.¢
be a conflation. By (2), there is a map h : B — I such that hf = id;.
(3)=(1). Let

AL-pt.c

be a conflation. Let A : A — I be a morphism. By (6) of the definition of an exact category
we can form the pushout diagram
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to get a conflation (f’,¢’) beginning with /. Applying the functor Hom(—, I) we get the
commutative diagram

*

0 —— Hom(C, I) —<~ Hom(B, I) -~ Hom(A, I) —— 0

| & -

0 — Hom(C,I) —= Hom(D, I) e Hom(I, 1) —0.
g

By assumption, there is a map 7 : D — [ such that 7 f" =idy, i.e, f*(7) = id;. Using the
commutativity of the diagram we get

[k () = W7 f(7) = h*(id;) = h
showing f* is surjective. Hence, Hom(—, I) is an exact functor. U

Proposition 2. Let (A,E) be an exact category with P an object of A. Then the following
are equivalent:

(1) P is a projective object.

(2) For any diagram

A—B——C
¥ g

with the bottom row a conflation, there is a morphism h' : P — B such that gh’ = h.
(3) Any conflation A — B — P ending with P splits.

Definition 4. A Frobenius category is an exact category A such that:

(1) A has enough injectives.
(2) A has enough projectives.
(3) An object is injective if and only if it is projective.

Example 5. Let R be a quasi-Frobenius ring. Then the category of right (or left) modules
with the canonical exact sructure is a Frobenius category by the Faith-Walker theorem.

Example 6. Let (Ch(A),E) be the exact category of example 2. Then one can show that a
complex is injective if and only if it is a split exact complex if and only if it is projective. One
can use this fact to show that Ch(.A) has enough injectives and projectives so is a Frobenius
category.

2. IDEALS AND QUOTIENT CATEGORIES

Definition 5. Let A be a pre-additive category and Z a class of morphisms of A. Denote
Z(A,B) = TN Homu(A,B). A two-sided ideal (or ideal for short) Z of A is a class of
morphisms such that:

(1) For each pair of objects A and B in A, Z(A, B) is a subgroup of Hom (A4, B).

(2) If f € Homa(A, B), g € Z(B,C) and h € Hom4(C, D) then hgf € Z(A, D).
Equivalently, an ideal is a subfunctor of the bifunctor Hom4(—, —) : A% x A — Ab where
the morphisms of the natural transformation are just inclusions.
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If A is a preadditive category and Z an ideal in A then we can define a new category A/Z
as follows. The objects of A/Z are the same as the objects of A. For any pair of objects A
and B, the abelian group
Hom (A, B)

Z(A, B)
are the morphisms from A to B. Suppose f — f' € Z(A, B) and g — ¢’ € Z(B,C). Then

9f =gt =gf —gf +af =g f'=9(f = )+ (g—9)f € Z(A,0)
showing gf = ¢'f’. Hence, (f,g) — gf is a well defined map
HOIHA/I(B, O) X HOHIA/I(A, B) — HOIHA/I(A, C)

Hom 4,7(A, B) :=

This is how we define composition. The element id, is an identity for A and 6( A,B) is the
zero object in Hom 4,7(A, B). Note, this composition is associative since it is associative in
A. By definition of the group structure on Hom4,z(A, B) and composition we get

Mg+g) f=mg+d)f=hlg+9g)f =hgf+hgf=hgf +hgf=hgf+hgf
showing A /7 is preadditive. The functor F' : A — A/Z which is the identity on objects and
which sends f to f is an additive functor which will be called the quotient functor.

If A is an additive category then A/ is also additive for any ideal Z. If 6 is a zero object
of A then 6 will also be a zero object in A/Z since Hom 4,7(6, B) and Hom 4,7(A, 0) still
consist of only one element. Let A and B be two objects of A with A& B the coproduct. Let
L4, tp be the canonical inclusions and 74, 75 the canonical projections. Since the quotient
functor F': A — A/Z is additive we find

TG = T = id; for i=AB
Tt =0 for i#£7j
TATA+ 15 Tp = idass
showing A @ B along with the maps 7, 75 are a coproduct of A and B in A/Z. This proves
the following proposition.

Proposition 3. Let A be a (pre)additive category and Z a two-sided ideal in A. Then the
quotient category A/T is (pre)additive and the quotient functor F : A — AJZ is additive.

The quotient category is a solution to a universal problem.

Theorem 1. Let G : A — B be an additive functor between two (pre)additive categories and
T an ideal in A. If for any pair of objects A and A" in A, G(f) =0 for all f € Z(A, A"),
then there is a unique additive functor H : A/Z — B such that G = HF'.

Proof. Since F is the identity on objects we have no choice but to define H(A) = G(A) for all
objects A. For any pair of objects (A, A’), G(Z(A, A’)) = {0} by assumption. Hence, there is
a unique group homomorphism H (A, A") : Hom (A, A")/Z(A, A’) - Homp(G(A), G(A")) =
Homp(H(A), H(A")) such that G = HF. H is given explicitly as H(f) = G(f) for all
7 € Homu(A, 4)/T(4, &'). Hence, H(g J) = H(g) = Glof) = G(9)G(f) = HGH(P).
Also, H(idy) = G(id4) = idga) = idpg(a) showing H is a functor. H is additive as

H(f+9)=H(f+9)=G(f+9)=G(f)+Glg) = H(f) + H(7).
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To see the uniqueness of H just note that any functor H' : A/Z — B with G = H'F must be
the identity on objects and must satisfy H'(A, A")F(A, A") = G(A, A’) for any pair (A, A").
This uniquely determines H' as being H defined above. ([l

3. THE STABLE CATEGORY OF AN ExAcT CATEGORY

Let (A, &) be an exact category. Let (A, B) be a pair of objects and define Z(A, B) C
Hom4(A, B) to be the subset of all morphisms f : A — B which fit into a commutative
diagram
f

N

with [ an injective object. If f = hg as in the diagram then —f = (—h)g. Also, zero mor-
phisms factor through any object. If f and f’ are in Z(A, B) then we have two commutative
diagrams

A B

f B A f!
N N
I I’

for injective objects I and I'. Let ¢« : [ — I & 1" and // : I' — I & I’ be the canonical
inclusions and 7 : I@®I' — I and 7’ : I &I’ — I’ the canonical projections. I @ I’ is injective
since I and I’ are injective. Define o = 1g+i¢g : A— I@&I'andy = hn+h'n . 11 — B.
Then ¢ = f + f' showing f + f’ factors through an injective object. Hence, Z(A, B) is a
subgroup of Hom4(A, B). If f: A — B, g € Z(B,C) and h : C — D then the diagram

fB g Ch
N A
I

shows hgf = hppf € (A, D). Hence, Z is an ideal in A. Similarly, there is the ideal P
consisting of all morphisms which factor through a projective object.

A B

A D

Definition 6. Let A be an exact category. The injectively stable category, A, is the quotient
A/Z where T is defined as the class of all morphisms which factor through an injective
objective. The projectively stable category, A, is the quotient A/P with P the ideal of all
morphisms which factor through a projective object.

The set of morphisms between two objects A and B in A will be denoted Hom(A, B). The
residue class of a morphism ¢ : A — B will be denoted . Similarly, Hom(A, B) will denote

the morphisms in A and a morphism will be denoted by %.

Lemma 4. Let (A,E€) be an exact category with T (P) as above. Let A and B be two
objects of A. If there are injectives I and I' (projectives P, P') such that A& I = B® I’
(A®P=B®P')then A= B in A (A).
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Proof. Any map from A @® I — B @& I’ can be written uniquely as a matrix
a fp
v 0
wherea: A— B, f:1— B,v: A—I'"and ¢ : [ — I'. Similarly, there is a matrix
(O/ 6/
,.y/ 6/)

for any map from B @ I’ — A& I. An isomorphism of the two direct sums gives matrices
above such that

o B\ (a B\  (da+py oB+50)  [ida O
v 8 ) \y §6) \Aa+dy Ap+d6)  \ 0 ids

Hence, id4 —a/a = 3’y which means

commutes. Therefore, idy = o/a. Similarly, ao’ = idp showing A is isomorphic to B in

A. O

Lemma 5. If (A,€) is an ezact category with A an object and I (P) an injective object
(projective object). Then A is isomorphic to A®T (A@ P)in A (A).

Proof. This is a corollary to the previous lemma but the particular isomorphism in this case
is important. Since tom4 + ;77 = idag; we find

idagr —tATa

Al —— s Apl
I /
I

commutes. Hence, 14 : A — A @ [ is an isomorphism in A with inverse 4. O

Lemma 6. Schanuel’s lemma. Let A be an ezact category. Given two conflations A —
I = B and A — I' = B with I and I injective, B&® I' = B' & I. In particular, B and B’
are isomorphic in the injectively stable category.

Proof. Given the two conflations we can construct the commutative diagram

©
g’t lh,
B’ B’
in which the middle row and column are conflations. Since I and I’ are injective these
conflations split showing B’ @I =I' 1= Ba . O
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Remark. There is a similar statement for conflations B - P — A and B’ — P’ — A with
P, P’ projective.

It will be useful to have a better understanding of the isomorphism B = B’ in Schanuel’s
lemma. Since

-2 rer] e B
is a conflation with I injective we know there is a map v : I’ @4 I — I such that 1y =
id;. This gives the isomorphism o = ¢;1) + tph’. Define k' = a~tip. Then Wk = idg,
K'W + o = idpga; and we can write a~' = pmp + k'mp.. Similarly, for the conflation
r*-rerr B

we have maps ¢’ : I'@41 — I"and k : B — I'®“I such that 8 = vp)/+1ph : '@ 1 =2 I'® B,
B~ = ¢'np + K'mp and @'Y + kh = idpga;. Using these maps we get isomorphisms
aft :Bal' - B @I and fa : BB @1 — B ® I' which when written as matrices

have the form
1 (RN _ hk' he
1 _ 1
O{B - (wk 1/180/) ) BO( - (w/kl 2/1,90) .
Hence, by lemma 4, the map A’k : B — B’ is an isomorphism in A with inverse hk’. Let
vy=vY'¢: I — 1 and v = —h'k. Then

vi=of =y =idp f' = f
and
gy =gV'eo =0V =n(YV +kh)p —hkhp =h'o —hkg=+'g.

Therefore, we have a commutative diagram

Al 9. p
|
Aﬁ“llﬁ“ !

I g’

in which 7' : B — B’ is an isomorphism in A. By similar reasoning, given two conflations
B — P — Aand B"— P’ — A with P and P’ projective, there is a commutative diagram

B—P——A

A b

B——P —=A
with 7/ an isomorphism in A.

Let (A, ) be an exact category with enough injectives. Then we can define an additive
functor T': A — A. In the case of a Frobenius category, this 7" will be an auto-equivalence.



THE STABLE CATEGORY OF A FROBENIUS CATEGORY IS TRIANGULATED 11

Suppose we have two conflations

f g

A——s]—A

B —/> _[I —,> B/
g
with [ and I’ injective. Let ¢ : A — B be a morphism in A. Since f'p : A — I' is a
morphism into an injective, proposition 1 gives the existence of a map ¢’ : I — I’ such that
the first square in the diagram

g

At 9y

/

@

1

¥ ®

A
| |
| |
Y Y
B —/> [, —l> B,
! g
commutes. Then we get a unique ¢” : A” — B’ filling in the second dotted line making the
right square commute as ¢'¢'f = ¢'f'p = 0.

Suppose we have ¢/ : [ — I’ and ¢" : A — B’ such that ¢"g = ¢'¢' and ¢¥'f = f'p.
Then (¢’ —¢')f = f'(¢ — ¢) = 0 which implies the existence of a map s : A" — I’ such that
¢ — 1 = sg. Then

(" =¥")g=g'(¢' =) =g'sg
which implies " — ¢"” = ¢'s since ¢ is epi. Hence, ¢” — 9" factors through I’ showing
¢ =1". Hence, the map ¢ : A — B induces a map ¢” : A” — B’ which is unique in A.

Similarly, If A is an exact category with enough projectives and we have two conflations

At op_t. 4y

B —P —2B
I g

with P and P’ projective, then any map ¢ : A — B induces a map ¢” : A" — B’ which is
unique in A.

Now we can define T': A — A. We will construct 7" in stages. First we define T': A — A,
then show T sends morphisms in Z to zero morphisms. This will give us the functor 7' :
A — A. For every object A in A, fix a conflation

m(A)

(3.1) A TA

with I(A) injective. For each object A, define T'(A) = T'A where T'A comes from 3.1. Given
amap ¢ : A — B, define T(p) = ¢ where ¢" : TA — TB is constructed as in the previous
paragraph. If ¢ = ids then we may take ¢/ = idr(4) which gives ¢"” = idp4. This gives
T(id4) = idp4. Similarly, given ¢ : B — C we can take ¢"¢" for ()" : TA — T'C showing
T(pp) = P"p" =" ¢" = T(Y)T(p). Moreover, given ¢, : A — B we can take " + "

for (o + )" showing T(¢ +¥) = (p + )" = ¢" + 9" = " + 9" = T() + T(¢). Hence, T
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is an additive functor from A to A.

If f € Z(A, B) then we can write f = hg where g : A — [ and h : I — B for some injective
object I. Therefore, f” = h”¢"” using the same notation as before where ¢” : TA — T'I and
" . TI — TB. Since I — I(I) — T1I is a conflation starting with an injective it splits.
Hence, I(1) = I & T(I) showing T'(I) is injective. Therefore, f” = h"”¢" factors through a
projective showing f” = 0. Hence, T'(f) = 0. This holds for all morphisms in Z so by the
universal property of A = A/Z, we know T induces a unique additive functor, which will
also be denoted as T, from A — A.

One can, in a similar fashion, construct an additive functor S : A — A whenever A has
enough projectives. This is done by choosing for each object A, a conflation

sA Y pay™ 4

with P(A) projective. Then S is defined on objects via S(A) = SA and on morphisms
f:A— BasT(f)= f" where f” is constructed such that

L(A) p(A)

SA 2L p(A) A
' |
f// | | f/ f
Y Y
SB——= P(B)—— B
uB) p(B)

commutes. Again, f” does not depend on the choice of f’.

4. A TRIANGULATION OF THE STABLE CATEGORY OF A FROBENIUS CATEGORY.

Let (A, &) be a Frobenius category. Recall this means 4 has enough injectives, enough
projectives and an object is injective if and only if it is projective. In this case, the injectively
stable and projectively stable categories are the same, A = A. We will stick with the
underline notation.

Theorem 2. Let A be a Frobenius category. The functor T : A — A constructed in the
previous section 1s an auto-equivalence with S being a quasi-inverse.

Proof. Let A be an object of A. S(A) = SA is the object of a chosen conflation

«(A)

SA p(A)

P(A) A.
We use the conflation
u(SA

w(SA
54D 5™ 154
to get T'S(A). By Schanuel’s lemma and the discussion afterwards, and the fact that pro-
jectives and injectives coincide we can construct the following commutative diagram

sA 554" 154

Uk

SA—— P(A) — A
«(4) p(54)
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such that 94 : TSA — A is an isomorphism in A.

Suppose we have a map f : A — B. Then we define S(f) to be f” = f" where f” is
constructed to make

54 pray ML 4

[ I

SB—— P(B) —= B
«(B) n(B)

commute. From here we can construct two commutative diagrams, being loose with the
identification of maps in A and a representative in A,

Dy (SA) " 54 54 s ™ 1o

| ool ]
(A) u(SB) m(SB)

p

54 p( A A SB 22 1(SB) T2 TSB
o LTk
SB——~ P(B)— B — ~ P(B)——~ B.
«(B) p(B) «(B) n(B)

From the two diagrams we find fn4 and T'S(f)np are maps which are induced by S(f) :
SA — SB. Hence,

fna=T5(f)ns

showing n : T'S — Id4 is a natural isomorphism. Similarly, we can construct a natural
isomorphism v : ST — Id 4 showing 7" is an equivalence with S a quasi-inverse. 0

Lets recall the definition of a triangulated category. Suppose A is an additive category
with an autoequivalence T'. A triangle in A is a sequence of the form

ALl-ptoctora
A (iso)morphism of triangles is a commutative diagram
Al.p oot
N A
r I ;9 y N /
A B C TA

such that ¢, and 6 are (iso)morphisms.

Definition 7. A triangulated category is an additive category with an auto-equivalence T

along with a class of triangles 7, called exact triangles, such that the following hold:

(TR1) Every triangle isomorphic to an exact triangle is exact. Every morphism f: A — B
can be embedded into an exact triangle as

A-L.p C TA.

For any object A, the triangle

A4 4 0 TA
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is exact.
(TR2) If
A-l.pfoc-toT4
is an exact triangle then
B—t-c—torA TR
is an exact triangle.
(TR3) Given a diagram
A-l.pf .0t T4
|
QPL lw ; lT(sﬁ)
A’ B’ c’ TA
f/ g/ h/

with the rows exact triangles and ¥ f = f’p, there exists a map 6 filling in the dotted
arrow making the diagram commute.
(TR4) The Octohedral Axiom Let f: A — B and g : B — C be two morphisms. If we

have exact triangles

TA

B2.ct.-p-2.TB

c-lop Moy

At op I p T 74
|
A oM o p_ M. g
h=gf
g J' jT(f)
E——FE——~TB
g
g/l J//
TB ——~TD
T(f")

commutes.

Remark. J.P. May shows in [4] that TR3 follows from TR1, TR2 and TRA4.
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Recall that a pre-triangulated category is a category satisfying all conditions in definition
7 except TR4. Also, the triangulated 5-lemma holds in a pre-triangulated category.

We will define a class of triangles in 4 and show it is a triangulation of A. Let f: A — B
be a morphism, and A — I — A’ a conflation with I injective. Let B @4 I be a pushout
and form the diagram

A—s]—T s A

in which the bottom row is a conflation. Let v : A” — T'A be a morphism such that v is an
isomorphism. Then, letting C = B @4 I and h = vh/, we get a triangle

I~

9

A B c—.T1A

which will be called standard. Define T to be the class of all triangles which are isomorphic
to a standard triangle. 7 will be the class of exact triangles.

Theorem 3. The category A with the auto-equivalence T and the class T is a pre-triangulated
category.

Proof. (TR1). Every triangle isomorphic to an exact triangle is, by composition, isomorphic
to a standard triangle. Every morphism f : A — B can be placed into an exact triangle
since they can always be placed into a standard triangle. From the commutative diagram

; W) ()

Al A T2 ) ZSTA

b o ] s

A A 0 TA
id 0 0

and the fact that I(A) =2 0 in A we get the bottom sequence is an exact triangle.
(TR2) It is enough to consider standard triangles. Let

Al t ot pa

be a standard triangle constructed from a commutative diagram of the form

A—~T—-T=A

I

B C A TA
g h v
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Here, v and T'(f) will be constructed from the following commutative diagram

A—s]—"5 A

B——=I(B)—~TB.
w(B) =(B)

Since f'v'u = u(B)f and C' is a pushout we get a unique ¢ : C' — I(B) such that g = u(B)
and Yp = f'v/'. Since

Tk —a(B))g = T(f)wh'g —n(Bbg =0 — n(B)u(B) = 0 and

(T(fHvh' —m(B)y)p = T(flvm(A) —7(B)p =0
we know T'(f)vh’ = n(B)1y. Therefore, we can construct the diagram

u(B)

m(B)

B I(B)

TB
R
h/
C—>IB)®A ——~TB
S
A/ A/
in which the first two columns and the top row are conflations. Here, 6 = (7(B), =T'(f)v).
Suppose we have maps a: I — W and §: I(B) — W as in the diagram

P
|
B g
u(B)l
1(B) 222 1(B)

such that au = fu(B)f. Then we get

au = Pugf = Bypu= Bf'v'u

Hence, there is a unique map v : A" — W such that a—fgf'v/ = yn. Defined : I(B)A" — W
as 0 := Bmyp) +yma. Then diypy = B and

o (;f,) p=(BY +h)p=Bp+kp=Bfv + 7 =«

The uniqueness of § comes from the uniqueness of v. Hence, the rectangle is a pushout.
However, the upper square in the rectangle is a pushout so by the pushout lemma, the
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bottom square of the rectangle is a pushout. Since u(B) is an inflation we get (;f,) is an

inflation. Notice

o (31) = et ~1(w) () = w(B0 - TCAA 0.

Suppose we have a map (a, —b) : I(B) & A" — W such that

(a,b) (;i},) = ayp — bh' = 0.
Using the fact that h'g = 0 and u(B) = ¢g we find
au(B) = athg = arpg — bh'g = (arh) — bh')g = 0.
Therefore, there is a unique o’ : TB — W such that a = a/7n(B). Also,
bh' = ayp = a'm(B)y = d'T(f)vh'

implies b = a'T(f) as k' is epi. Hence, (a,—b) = (a/'m(B), —d'T(f)v) = ' (7(B),=T(f)v) =

a'6 showing 6 is a cokernel of (w Hence, the first row in the diagram below is a standard

)

B—>C—>IB)69A’

B 2.C

B C .
g h

All squares except the top right corner commute. However,

triangle:

0—T(f)v = (x(B),0)

shows 0 — T'(f)v factors through an injective showing the whole diagram commutes in A.
Also, mr4 and v are isomorphisms showing the lower triangle is isomorphic to the upper
triangle in A. Hence, the lower triangle is an exact triangle.

(TR3) Again, it is enough to consider standard triangles. Suppose we have two standard
triangles
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and
XtsJ X
4 Ja’ |
Z X' TX
X n
and the following commutative diagram
! g h
(4.1) A C TA
| Lw e
Z TX.
/ g/ hil

Since v is an isomorphism we can find a w such that wy = id4 and vw = idyr4. Hence, we
can construct the commutative diagram

u(A)

A ) M

X— J— X

R

X ——>I(X) —=TX
u(X) w(X)

and get T(p) = p"w. As ©f = f'¢ there is an injective I’ such that ¢ f — f'¢ factors
through I:

e fe

\/

Since € factors through u we may as well assume I’ = I and € = u. Thus,
vf = f'e+ Bu
Consider the two morphisms ¢ty : B — Z and o/’ + ¢'8 : [ — Z. Since C' is a pushout and
gvf=4gfe+gBu=advp+gpu=dyu+gpu= (¢ +gB)u,
we get a unique map 6 : C' — Z such that 0g = ¢’y and a = /'’ + ¢'f. Using 0,
(W0 —¢"h)a =N +hg'B—¢"m(A) =n(A)p" —¢"m(A) =0
and
(W0 —¢"h)g = h'0g —¢"hg =gy —¢"hg=0-0=0
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showing h'0 = ¢"h using that C' is a pushout. Hence, 0 : C' — Z is a map for which

~
S
=

A——B C—A

R

X Y A X'.

g
m\
=

commutes. Hence, the larger diagram

[~
)
=
€

X Y 7z —— X'
I g
Lk
X Y TX
I g !
commutes showing 6 : C' — Z fills in diagram 4.1 making it commute. O

Lemma 7. Consider a morphism f : A — B. Then any two standard triangles constructed
from the pushout diagrams

A—LsT "o A AL>I/—W/>A”
A N R
B—C—A B—(C —= A"
g h I h'

are 1somorphic.

Proof. This follows from the commutative diagram

A lp f oo oy

B " TA,

g/ V/h/

[~

TR3 and the triangulated 5-lemma. 0

Theorem 4. The pre-triangulated category A is triangulated.
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Proof. We just need to show the octohedral axiom holds. Suppose we have three exact
triangles

AiBLDLTA

g g

B C —FE—1TB

h=gf n R
A C——F—TA.
We can assume each triangle is standard. Actually, by the previous lemma we can assume
the first and third triangles are constructed as

u(A)

A—— I (A) A——1 (A)
I la H || H
B - D T C ” F =
and the second triangle is constructed as

B2 (py . p

|

C ——F——B —TB

g9 g

Note, as u(D) and f’ are inflations, their composition is an inflation which gives the conflation
B — I(D) — B'. As D is a pushout and

(Wg)f =Nh=~u(A)
there is a unique j : D — F such that jf' = h'g and ja = . Similarly,
gh=ggf = puD)f'f = pu(D)au(A)

implies there is a unique j' : F' — FE such that j'h' = ¢’ and j'y = fu(D)a. As

(17 = BuD))a = j'v = Pu(D)a = Bu(D)a — fu(D)a = 0 and

(75 = BuD)f" = j'Wg—pulD)f' =g9—9gg=0
we get j'j = fu(D) again using the fact that D is a pushout. Hence, we can construct the
commutative diagram

A 1A

; La
B—L-p "2 1(p)
9 J lﬁ
C—r F—

The top left square is a pushout by construction and since gf = h and ja = v we see the
tall left rectangle is also a pushout. Hence, by the pushout lemma, the bottom left square
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is a pushout. However, j'h’ = ¢’ shows the flat rectangle is a pushout by construction so we
again use the pushout lemma to conclude the bottom right square is a pushout. We can use
the bottom right square to construct the following standard triangle

p "2 rpy "L rp
I |
F -/ E =11

J J

The map v : B — T'B was chosen to be an isomorphism, let y be an inverse. We will use
the diagrams

AD ry™ora ) ™ R

[k T T T
u(D)f’

B2 py . p B2 py . p

) H §

B l(B)—=TB D —=1(D)—=TD
wB) P E) 0 1P 25

constructed in the usual way, to determine representatives T'(f) = vo and T(f') = ¢ u.

Now we have the data to construct the diagram

atop L p Ty
| oo
Ao M op M TA
E E—~TB
vy i ’
TB = TD.

We just need to check that this diagram commutes. Reading from top left to bottom right:
Square 1 commutes as h = gf by definition. Square 2 commutes as j was constructed such
that jf' = h'g and joa = 7. Square 3 commutes since

(h"j = [ = h'y—m(A) =0
(h//j _ f//)f/ — h//h/g . f//f/ — 0 _ O — O
and D is a pushout. Square 4 commutes by construction of j'. Square 5 commutes as

(TN =vg"f )y = veh"y —vg"j'y = v(em(A) — ¢"Bu(D)a) = v(ru(D)a — ru(D)a) = 0
(TP = vg"i )" = T(fIN'N —vg"g’ =0-0=0
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and F'is a pushout. The last square commutes in A. Note,
(Vg" —3")B = g"B—j"B=y¢m—7(D)=0
(g ="y = vg'g =j'g =0—j"ih =0-0=0
shows 1¢” = j” as F is a pushout. Hence, in A,
T(f vy —j" =dbprvg —j" =dg" —j"=0
showing square 6 commutes in ,A. This verifies the octohedral axiom. U
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