Homework 1 for Group Cohomology, Winter 2006 due Monday, January 30

Unless specified otherwise, k is a field, G is a finite group.

Problem 0. Find as many (non-identical) explanations as you can to justify that $H^i(G, kG) = 0$ for i > 0.

Problem 1. Let P(M) be the projective cover of a *G*-module *M*, *S* be a simple *G*-module, and $\Omega^{i}(M)$ be the *i*-th Heller shift of *M*.

- (1) Show that $\operatorname{Hom}_G(P(M), S) = \operatorname{Hom}_G(M, S)$.
- (2) Prove the "dimension shifting formula":

 $\operatorname{Ext}_{G}^{i}(M, S) = \operatorname{Hom}_{G}(\Omega^{i}(M), S)$

(3) Assume that char k does not divide the order of G. Prove that $H^i(G, k) = 0$ for any i > 0.

Problem 2. Let M be a finite dimensional G module, and $M^{\#}$ be the linear dual of M, $M^{\#} = \operatorname{Hom}_{k}(M, k)$.

(a) Show that M is a direct summand of $M \otimes M^{\#} \otimes M$ as a G-module.

(b) Conclude that the following are equivalent:

- (1) M is projective
- (2) $\operatorname{End}_k(M, M) = M \otimes M^{\#}$ is projective
- (3) $M^{\#}$ is projective
- (4) M is injective

(c) Conclude that kG is a self-injective algebra, i.e. is an injective module over itself.

(d) Give an example of a ring R which is not an injective module over itself.

Problem 3. Compute normalized bar resolution of the trivial $\mathbb{Z}/2$ -module \mathbb{Z} . Compare with the periodic resolution.

For the next two problems, denote by I the augmentation ideal of kG, i.e. $I = \text{Ker} \{ \epsilon : kG \to k \}$ where $\epsilon(g) = 1$ for any $g \in G$. **Problem 4.** Show that

$$\operatorname{Ext}_{G}^{1}(k,k) \simeq \operatorname{Hom}_{k}(I/I^{2},k).$$

Problem 5. Prove that $H_1(G, \mathbb{Z}) = G^{ab}$ using short exact sequence of G-modules $0 \to I \to \mathbb{Z}G \to \mathbb{Z} \to 0$.

Problem 6. Compute $H^i(\mathbb{Z}/p,\mathbb{Z}/p)$ and $H_i(\mathbb{Z}/p,\mathbb{Z}/p)$.

Problem 7. (Hilbert's theorem 90: multiplicative version). Let L/K be a finite Galois extension of fields, with Galois group G. Observe that G acts on the group of units of L, L^* .

Hilbert's theorem 90 states that if $\theta: G \to L^*$ is a derivation such that $\theta(gh) = g\theta(h)\theta(g)$, then $\theta(g) = (gx)/x$ for some $x \in L^*$.

(a) Show that Hilbert's theorem 90 reformulates as

 $H^1(G, L^*) = 0.$

(b) Show that $H^2(G, L^*)$ does not necessarily vanish.