Homework II for Group Cohomology, Winter 2006

due Monday, February 27

Unless specified otherwise, k is a field, G is a finite group.
Problem 0. Find a new justification for the equality $H^{i}(G, k G)=0$ for $i>0$.
Problem 1. Let Δ be a category with objects $\{[n]\}, n \geq 0$, the ordered sets of numbers $0 \ldots n$, and with morphisms being the order-preserving maps. Show that any morphism is a composition of "face" and "degeneracy" maps.

Problem 2.

(a) Let $0 \rightarrow A \rightarrow \mathcal{G} \xrightarrow{p} G \rightarrow 1$ be an extension of G by an abelian group A. Show that the following are equivalent
(1) p admits a section (i.e. there is a group homomorphism $s: G \rightarrow \mathcal{G}$ such that $\left.p \circ s=i d_{G}\right)$
(2) $\mathcal{G} \simeq G \ltimes A$
(b) Let $0 \rightarrow A \rightarrow \mathcal{G} \xrightarrow{p} G \rightarrow 1$ be a fixed split extension. Two sections are called equivalent if they differ by conjugation of an element from A. Show that there is 1-1 correspondence between $H^{1}(G, A)$ and the set of equivalence classes of sections of p.
Problem 3. Let $0 \rightarrow A \rightarrow \mathcal{G} \xrightarrow{p} G \rightarrow 1$ be an extension of G by an abelian group A, and let $f \in Z^{2}(G, A)$ be a normalized cocycle (i.e. $f(1, g)=f(g, 1)=0$ for any $g \in G)$. Show that $g f\left(g^{-1}, g\right)=f\left(g, g^{-1}\right)$.

Problem 4. Let k be a field and n be a positive integer. Let γ denote the class in $H^{2}\left(P G L_{n}(k), k^{*}\right)$ corresponding to the extension $1 \rightarrow k^{*} \rightarrow G L_{n}(k) \rightarrow$ $P G L_{n}(k) \rightarrow 1$. If $\rho: G \rightarrow P G L_{n}(k)$ is a projective representation, show that ρ lifts to a linear representation $\tilde{\rho}: G \rightarrow G L_{n}(k)$ if and only if $\rho^{*}(\gamma)=0$ as an element of $H^{2}\left(G, k^{*}\right)$ where $\rho^{*}: H^{*}\left(P G L_{n}(k), k^{*}\right) \rightarrow H^{*}\left(G, k^{*}\right)$ is the map in cohomology induced by ρ.

Problem 5. Let G be a finite group, H be a subgroup of G, and k be a field. Prove "tensor identity": for a G-module M and an H-module N there is a canonical isomorphism

$$
\operatorname{Ind}_{H}^{G}\left(N \otimes_{k} M\right) \simeq \operatorname{Ind}_{H}^{G} N \otimes_{k} M
$$

Problem 6. Let $i: H \hookrightarrow G$ be a subgroup of G, M be a G-module, and $f: M \rightarrow \operatorname{Coind}_{H}^{G} M$ be the canonical map. Show that the induced map in cohomology $i^{*}: H^{*}(G, M) \rightarrow H^{*}(H, M)$ coincides with the map $H^{*}(G, M) \rightarrow$ $H^{*}\left(G, \operatorname{Coind}_{H}^{G} M\right) \stackrel{\text { Frob }}{\sim} H^{*}(H, M)$.

Problem 7. Consider $\mathbb{Z} / m \mathbb{Z}$ as a subgroup in $\mathbb{Z} /(m n) \mathbb{Z}$. Compute the associated restriction and corestriction maps on cohomology with trivial coefficients \mathbb{Z}.

Problem 8. Prove "double coset formula":

$$
\operatorname{Res}_{K}^{G} \operatorname{Ind}_{H}^{G} M=\bigoplus_{x \in K \backslash G / H} \operatorname{Ind}_{K \cap x H x^{-1}}^{K} \operatorname{Res}_{K \cap x H x^{-1}}^{x H x^{-1}} x M
$$

where $K, H \subset G$ are subgroups of finite index, M is a G-module and $K \backslash G / H$ is a set of double coset representatives.

