
QUIVERS AND PATH ALGEBRAS

JIM STARK

1. Definitions

Definition 1. A quiver Q is a finite directed graph. Specifically Q = (Q0, Q1, s, t)
consists of the following four data:

• A finite set Q0 called the vertex set.
• A finite set Q1 called the edge set.
• A function s : Q1 → Q0 called the source function.
• A function t : Q1 → Q0 called the target function.

This is nothing more than a finite directed graph. We allow loops and multiple
edges. The only difference is that instead of defining the edges as ordered pairs of
vertices we define them as their own set and use the functions s and t to determine
the source and target of an edge.

Definition 2. A (possibly empty) sequence of edges p = αnαn−1 · · ·α1 is called
a path in Q if t(αi) = s(αi+1) for all appropriate i. If p is a non-empty path we
say that the length of p is `(p) = n, the source of p is s(α1), and the target of p is
t(αn). For an empty path we must choose a vertex from Q0 to be both the source
and target of p and we say `(p) = 0.

Note that paths are read right to left as in composition of functions. Though
the source and target functions of a quiver are defined on edges and not on paths
we will abuse notation and write s(p) and t(p) for the source and target of a path
p. If p and q are paths in Q such that t(q) = s(p) then we can form the composite
path pq. This path is defined by appending the possibly empty sequence of edges
in p to the end (left) of the possibly empty sequence of edges in q giving a new path
of length `(pq) = `(p) + `(q). This operation is clearly associative.

An empty path whose source and target are the vertex i ∈ Q0 is called the trivial
path at i and is denoted ei. Note that the composition of paths eiei is length zero
starting at i therefore e2i = ei. Also note that if i 6= j then ei and ej cannot be
composed as paths. In the definition to come this implies that eiej = 0.

Definition 3. Let k be a field and Q a quiver. Define kQ to be the k-vector space
that has as its basis the set of all paths in Q. If p and q are two paths in Q define
their product pq to be the composition of the paths p and q if t(q) = s(p) and 0
otherwise. We extend this operation to arbitrary vectors in kQ by distributivity.
As composition of paths is associative this gives kQ the structure of an associative
k-algebra. It is called the path algebra of the quiver Q.

We identify Q0 and Q1 with the set of all paths of length 0 and the set of all
paths of length 1 respectively. In general we define Qn to be the set of all paths in

Date: 11 October, 2010.

1



2 JIM STARK

Q of length n and kQn to be the linear subspace of kQ spanned by the Qn. As a
vector space kQ is then the direct sum

kQ =
⊕
i∈N0

kQi.

If p ∈ Qn and q ∈ Qm then either pq = 0 or `(pq) = `(p) + `(q) = n + m. In
either case pq ∈ kQn+m therefore (kQn)(kQm) ⊆ kQn+m. This shows that kQ is a
graded k-algebra.

From the decomposition kQ =
⊕

i∈N0
kQi we also immediately see that kQ is

finite dimensional if and only if Q contains no cycles.

2. Examples

Example 1. Let Q be the quiver
1

with vertex set {1} and no edges. The trivial path at 1 is then the only path in Q.
For a, b ∈ k we find (ae1)(be1) = abe1 therefore mapping e1 7→ 1 gives kQ = k.

Example 2. Let Q be the quiver

1 2 · · · n .

The only paths are the trivial paths {ei}ni=1. Mapping ei to the ith standard basis
vector of the product ring kn gives kQ = kn.

Example 3. Let Q be the quiver

1
α // 2 .

The paths in Q are {e1, e2, α} which leads to the multiplication shown in Table 1.

Table 1

e1 e2 α

e1 e1 0 0
e2 0 e2 α
α α 0 0

Define kQ → M2(k) by extending e1 7→ [ 1 0
0 0 ], e2 7→ [ 0 0

0 1 ], and α 7→ [ 0 0
1 0 ] linearly.

These matrixes satisfy the same multiplication table as {e1, e2, α} so this is a well
defined map of algebras. We map basis elements to basis elements therefore it is a
bijection onto its image giving

kQ = {A ∈M2(k) | A12 = 0} =
[
k 0
k k

]
.

Example 4. Let Q be the quiver

1 // 2 // · · · // n .

Observe that for i ≤ j there is a unique path from i to j; let αij be this path. Then
the paths of Q are {αij}i≤j . Let Eij ∈ Mn(k) be the matrix whose only non-zero
entry is a 1 in the (ij)th position. Defining kQ→Mn(k) by αij 7→ Eij and applying
the previous argument gives kQ equal to the algebra of lower triangular matrixes
contained in Mn(k).
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The previous two examples immediately generalize to the following result. If Q
is a quiver with n vertices and the property that for any two vertices i and j there
is at most one path from i to j, then the path algebra of Q is

kQ = {A ∈Mn(k) | Aij = 0 if there is no path from i to j} .

This condition on Q is very restrictive but for the quivers that satisfy it we can
immediately compute kQ.

Example 5. Let Q be the quiver

2

��
1 // 5 3oo

4

OO

,

then

kQ =


k 0 0 0 k
0 k 0 0 k
0 0 k 0 k
0 0 0 k k
0 0 0 0 k

 .
Example 6. Let Q be the quiver

1

α

��

The paths of Q are
{
e1, α, α

2, . . .
}

. The identity element of kQ is simply e1 therefore
the map kQ→ k[x] defined by e1 7→ 1 and α 7→ x is an isomorphism; kQ = k[x].

Example 7. Let Q be the quiver

1
α1{{

α2

��

···
;;

αn

[[

consisting of a single vertex and n loops. Then mapping e1 7→ 1 and αi 7→ xi gives
kQ = k〈x1, . . . , xn〉, the free algebra on n non-commuting variables.

Example 8. Let Q be the Kronecker quiver

1
α

((

β

66 2 .

The paths are {e1, e2, α, β} with multiplication given in Table 2.
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Table 2

e1 e2 α β

e1 e1 0 0 0
e2 0 e2 α β
α α 0 0 0
β β 0 0 0

Define the Kronecker Algebra to be K =
[
k 0
k2 k

]
where we multiply elements from

k and k2 using the standard scalar multiplication of a field on a two dimensional
vector space. Explicitly[

a 0
(b, c) d

] [
e 0

(f, g) h

]
=
[

ae 0
(b, c)e+ d(f, g) dh

]
=
[

ae 0
(be+ df, ce+ dg) dh

]
.

Now let kQ→ K be the map given by extending

e1 7→
[

1 0
(0, 0) 0

]
, e2 7→

[
0 0

(0, 0) 1

]
, α 7→

[
0 0

(1, 0) 0

]
, and β 7→

[
0 0

(0, 1) 0

]
linearly. This sends basis elements to basis elements and respects multiplication
therefore it is an isomorphism of algebras. Hence kQ = K.

3. Trivial paths

Fix a quiver Q. For each vertex i ∈ Q0 we continue to let ei ∈ kQ be the trivial
path at i. Note if p is any other path then eip = p if t(p) = i and eip = 0 otherwise.
Thus multiplication on the left by ei fixes all basis vectors whose paths end at i and
kills all basis vectors whose paths do not end at i. Similarly pei = p if s(p) = i and
pei = 0 otherwise so multiplication on the left by ei fixes all basis vectors whose
paths begin at i and kills all basis vectors whose paths do not begin at i.

Now it is easy to see that the left ideal Aei has a basis consisting of all paths
beginning at i. Likewise the right ideal eiA has a basis consisting of all paths ending
at i. The linear subspace ejAei has a basis consisting of all paths from i to j and
the linear subspace spanned by AeiA has a basis consisting of all paths through i.

Proposition 1. Let Q be a quiver and kQ its path algebra.
(1) The trivial paths ei are orthogonal idempotents.
(2) The element

∑
i ei is the identity element of kQ.

(3) The A-module Aei is projective.
(4) The k-algebra eiAei is a domain with identity.
(5) For any A-module M we have HomA(Aei,M) = eiM as k-vector spaces.
(6) The Aei are indecomposible and inequivalent (Aei ' Aej implies i = j).

Proof.
(1) That e2i = ei and eiej = 0 for all i 6= j is immediate.
(2) It suffices to check the claim on basis elements of kQ and on these elements

the assertion is clear.
(3) From (1) and (2) follows the decomposition A =

⊕
iAei. Thus Aei is a

direct summand of a free A-module.
(4) Clearly eiAei is closed under addition and multiplication and ei acts as the

identity. Assume a, b ∈ eiAei are neither zero nor the identity and write
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each as a linear combination of paths. A single path of length m + n > 0
cannot be written as a path of length n composed with a path of length m
in more than one way. Hence choosing n and m to be the maximal lengths
of paths in a and b we see that ab must contain a path of length m + n.
Thus ab 6= 0.

(5) The map φ 7→ φ(ei) = φ(e2i ) = eiφ(ei) is k-linear. Any A-module morphism
φ : Aei →M is defined by the image of ei so it is an isomorphism.

(6) One can check, in the case M = Aei, that the vector space isomorphism of
(5) respects multiplication and is therefore an algebra isomorphism. If Aei
were decomposable then a projection map M ⊕N → M ⊕ 0 would give a
non-trivial idempotent in EndA(Aei) = eiAei, violating (4). Thus Aei is
indecomposable.

Assume φ : Aei → Aej and ψ : Aej → Aei are inverse A-module maps.
Then ei = ψφ(ei) = ψ(φ(ei)ej) = φ(ei)ψ(ej) = φ(ei)ejψ(ej) is a path
through ej implying i = j.

�
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