QUIVERS AND PATH ALGEBRAS

JIM STARK

1. Definitions

Definition 1. A quiver Q is a finite directed graph. Specifically $Q=\left(Q_{0}, Q_{1}, s, t\right)$ consists of the following four data:

- A finite set Q_{0} called the vertex set.
- A finite set Q_{1} called the edge set.
- A function $s: Q_{1} \rightarrow Q_{0}$ called the source function.
- A function $t: Q_{1} \rightarrow Q_{0}$ called the target function.

This is nothing more than a finite directed graph. We allow loops and multiple edges. The only difference is that instead of defining the edges as ordered pairs of vertices we define them as their own set and use the functions s and t to determine the source and target of an edge.

Definition 2. A (possibly empty) sequence of edges $p=\alpha_{n} \alpha_{n-1} \cdots \alpha_{1}$ is called a path in Q if $t\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right)$ for all appropriate i. If p is a non-empty path we say that the length of p is $\ell(p)=n$, the source of p is $s\left(\alpha_{1}\right)$, and the target of p is $t\left(\alpha_{n}\right)$. For an empty path we must choose a vertex from Q_{0} to be both the source and target of p and we say $\ell(p)=0$.

Note that paths are read right to left as in composition of functions. Though the source and target functions of a quiver are defined on edges and not on paths we will abuse notation and write $s(p)$ and $t(p)$ for the source and target of a path p. If p and q are paths in Q such that $t(q)=s(p)$ then we can form the composite path $p q$. This path is defined by appending the possibly empty sequence of edges in p to the end (left) of the possibly empty sequence of edges in q giving a new path of length $\ell(p q)=\ell(p)+\ell(q)$. This operation is clearly associative.

An empty path whose source and target are the vertex $i \in Q_{0}$ is called the trivial path at i and is denoted e_{i}. Note that the composition of paths $e_{i} e_{i}$ is length zero starting at i therefore $e_{i}^{2}=e_{i}$. Also note that if $i \neq j$ then e_{i} and e_{j} cannot be composed as paths. In the definition to come this implies that $e_{i} e_{j}=0$.

Definition 3. Let k be a field and Q a quiver. Define $k Q$ to be the k-vector space that has as its basis the set of all paths in Q. If p and q are two paths in Q define their product $p q$ to be the composition of the paths p and q if $t(q)=s(p)$ and 0 otherwise. We extend this operation to arbitrary vectors in $k Q$ by distributivity. As composition of paths is associative this gives $k Q$ the structure of an associative k-algebra. It is called the path algebra of the quiver Q.

We identify Q_{0} and Q_{1} with the set of all paths of length 0 and the set of all paths of length 1 respectively. In general we define Q_{n} to be the set of all paths in

[^0]Q of length n and $k Q_{n}$ to be the linear subspace of $k Q$ spanned by the Q_{n}. As a vector space $k Q$ is then the direct sum
$$
k Q=\bigoplus_{i \in \mathbb{N}_{0}} k Q_{i}
$$

If $p \in Q_{n}$ and $q \in Q_{m}$ then either $p q=0$ or $\ell(p q)=\ell(p)+\ell(q)=n+m$. In either case $p q \in k Q_{n+m}$ therefore $\left(k Q_{n}\right)\left(k Q_{m}\right) \subseteq k Q_{n+m}$. This shows that $k Q$ is a graded k-algebra.

From the decomposition $k Q=\bigoplus_{i \in \mathbb{N}_{0}} k Q_{i}$ we also immediately see that $k Q$ is finite dimensional if and only if Q contains no cycles.

2. Examples

Example 1. Let Q be the quiver

1

with vertex set $\{1\}$ and no edges. The trivial path at 1 is then the only path in Q. For $a, b \in k$ we find $\left(a e_{1}\right)\left(b e_{1}\right)=a b e_{1}$ therefore mapping $e_{1} \mapsto 1$ gives $k Q=k$.
Example 2. Let Q be the quiver

$$
\begin{array}{cccc}
1 & 2 & \cdots & n .
\end{array}
$$

The only paths are the trivial paths $\left\{e_{i}\right\}_{i=1}^{n}$. Mapping e_{i} to the $i^{\text {th }}$ standard basis vector of the product ring k^{n} gives $k Q=k^{n}$.
Example 3. Let Q be the quiver

$$
1 \xrightarrow{\alpha} 2 .
$$

The paths in Q are $\left\{e_{1}, e_{2}, \alpha\right\}$ which leads to the multiplication shown in Table 1.
TABLE 1

	e_{1}	e_{2}	α
e_{1}	e_{1}	0	0
e_{2}	0	e_{2}	α
α	α	0	0

Define $k Q \rightarrow \mathbb{M}_{2}(k)$ by extending $e_{1} \mapsto\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]$, $e_{2} \mapsto\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, and $\alpha \mapsto\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ linearly. These matrixes satisfy the same multiplication table as $\left\{e_{1}, e_{2}, \alpha\right\}$ so this is a well defined map of algebras. We map basis elements to basis elements therefore it is a bijection onto its image giving

$$
k Q=\left\{A \in \mathbb{M}_{2}(k) \mid A_{12}=0\right\}=\left[\begin{array}{cc}
k & 0 \\
k & k
\end{array}\right]
$$

Example 4. Let Q be the quiver

$$
1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n
$$

Observe that for $i \leq j$ there is a unique path from i to j; let $\alpha_{i j}$ be this path. Then the paths of Q are $\left\{\alpha_{i j}\right\}_{i \leq j}$. Let $E_{i j} \in \mathbb{M}_{n}(k)$ be the matrix whose only non-zero entry is a 1 in the $(i j)^{\text {th }}$ position. Defining $k Q \rightarrow \mathbb{M}_{n}(k)$ by $\alpha_{i j} \mapsto E_{i j}$ and applying the previous argument gives $k Q$ equal to the algebra of lower triangular matrixes contained in $\mathbb{M}_{n}(k)$.

The previous two examples immediately generalize to the following result. If Q is a quiver with n vertices and the property that for any two vertices i and j there is at most one path from i to j, then the path algebra of Q is

$$
k Q=\left\{A \in \mathbb{M}_{n}(k) \mid A_{i j}=0 \text { if there is no path from } i \text { to } j\right\}
$$

This condition on Q is very restrictive but for the quivers that satisfy it we can immediately compute $k Q$.

Example 5. Let Q be the quiver

then

$$
k Q=\left[\begin{array}{ccccc}
k & 0 & 0 & 0 & k \\
0 & k & 0 & 0 & k \\
0 & 0 & k & 0 & k \\
0 & 0 & 0 & k & k \\
0 & 0 & 0 & 0 & k
\end{array}\right]
$$

Example 6. Let Q be the quiver

The paths of Q are $\left\{e_{1}, \alpha, \alpha^{2}, \ldots\right\}$. The identity element of $k Q$ is simply e_{1} therefore the map $k Q \rightarrow k[x]$ defined by $e_{1} \mapsto 1$ and $\alpha \mapsto x$ is an isomorphism; $k Q=k[x]$.

Example 7. Let Q be the quiver

consisting of a single vertex and n loops. Then mapping $e_{1} \mapsto 1$ and $\alpha_{i} \mapsto x_{i}$ gives $k Q=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$, the free algebra on n non-commuting variables.

Example 8. Let Q be the Kronecker quiver

The paths are $\left\{e_{1}, e_{2}, \alpha, \beta\right\}$ with multiplication given in Table 2.

TABLE 2

	e_{1}	e_{2}	α	β
e_{1}	e_{1}	0	0	0
e_{2}	0	e_{2}	α	β
α	α	0	0	0
β	β	0	0	0

Define the Kronecker Algebra to be $K=\left[\begin{array}{cc}k & 0 \\ k^{2} & k\end{array}\right]$ where we multiply elements from k and k^{2} using the standard scalar multiplication of a field on a two dimensional vector space. Explicitly

$$
\left[\begin{array}{cc}
a & 0 \\
(b, c) & d
\end{array}\right]\left[\begin{array}{cc}
e & 0 \\
(f, g) & h
\end{array}\right]=\left[\begin{array}{cc}
a e & 0 \\
(b, c) e+d(f, g) & d h
\end{array}\right]=\left[\begin{array}{cc}
a e & 0 \\
(b e+d f, c e+d g) & d h
\end{array}\right] .
$$

Now let $k Q \rightarrow K$ be the map given by extending
$e_{1} \mapsto\left[\begin{array}{cc}1 & 0 \\ (0,0) & 0\end{array}\right], \quad e_{2} \mapsto\left[\begin{array}{cc}0 & 0 \\ (0,0) & 1\end{array}\right], \quad \alpha \mapsto\left[\begin{array}{cc}0 & 0 \\ (1,0) & 0\end{array}\right], \quad$ and $\quad \beta \mapsto\left[\begin{array}{cc}0 & 0 \\ (0,1) & 0\end{array}\right]$
linearly. This sends basis elements to basis elements and respects multiplication therefore it is an isomorphism of algebras. Hence $k Q=K$.

3. Trivial paths

Fix a quiver Q. For each vertex $i \in Q_{0}$ we continue to let $e_{i} \in k Q$ be the trivial path at i. Note if p is any other path then $e_{i} p=p$ if $t(p)=i$ and $e_{i} p=0$ otherwise. Thus multiplication on the left by e_{i} fixes all basis vectors whose paths end at i and kills all basis vectors whose paths do not end at i. Similarly $p e_{i}=p$ if $s(p)=i$ and $p e_{i}=0$ otherwise so multiplication on the left by e_{i} fixes all basis vectors whose paths begin at i and kills all basis vectors whose paths do not begin at i.

Now it is easy to see that the left ideal $A e_{i}$ has a basis consisting of all paths beginning at i. Likewise the right ideal $e_{i} A$ has a basis consisting of all paths ending at i. The linear subspace $e_{j} A e_{i}$ has a basis consisting of all paths from i to j and the linear subspace spanned by $A e_{i} A$ has a basis consisting of all paths through i.

Proposition 1. Let Q be a quiver and $k Q$ its path algebra.
(1) The trivial paths e_{i} are orthogonal idempotents.
(2) The element $\sum_{i} e_{i}$ is the identity element of $k Q$.
(3) The A-module $A e_{i}$ is projective.
(4) The k-algebra $e_{i} A e_{i}$ is a domain with identity.
(5) For any A-module M we have $\operatorname{Hom}_{A}\left(A e_{i}, M\right)=e_{i} M$ as k-vector spaces.
(6) The $A e_{i}$ are indecomposible and inequivalent $\left(A e_{i} \simeq A e_{j}\right.$ implies $\left.i=j\right)$.

Proof.
(1) That $e_{i}^{2}=e^{i}$ and $e_{i} e_{j}=0$ for all $i \neq j$ is immediate.
(2) It suffices to check the claim on basis elements of $k Q$ and on these elements the assertion is clear.
(3) From (1) and (2) follows the decomposition $A=\bigoplus_{i} A e_{i}$. Thus $A e_{i}$ is a direct summand of a free A-module.
(4) Clearly $e_{i} A e_{i}$ is closed under addition and multiplication and e_{i} acts as the identity. Assume $a, b \in e_{i} A e_{i}$ are neither zero nor the identity and write
each as a linear combination of paths. A single path of length $m+n>0$ cannot be written as a path of length n composed with a path of length m in more than one way. Hence choosing n and m to be the maximal lengths of paths in a and b we see that $a b$ must contain a path of length $m+n$. Thus $a b \neq 0$.
(5) The $\operatorname{map} \phi \mapsto \phi\left(e_{i}\right)=\phi\left(e_{i}^{2}\right)=e_{i} \phi\left(e_{i}\right)$ is k-linear. Any A-module morphism $\phi: A e_{i} \rightarrow M$ is defined by the image of e_{i} so it is an isomorphism.
(6) One can check, in the case $M=A e_{i}$, that the vector space isomorphism of (5) respects multiplication and is therefore an algebra isomorphism. If $A e_{i}$ were decomposable then a projection map $M \oplus N \rightarrow M \oplus 0$ would give a non-trivial idempotent in $\operatorname{End}_{A}\left(A e_{i}\right)=e_{i} A e_{i}$, violating (4). Thus $A e_{i}$ is indecomposable.

Assume $\phi: A e_{i} \rightarrow A e_{j}$ and $\psi: A e_{j} \rightarrow A e_{i}$ are inverse A-module maps. Then $e_{i}=\psi \phi\left(e_{i}\right)=\psi\left(\phi\left(e_{i}\right) e_{j}\right)=\phi\left(e_{i}\right) \psi\left(e_{j}\right)=\phi\left(e_{i}\right) e_{j} \psi\left(e_{j}\right)$ is a path through e_{j} implying $i=j$.

[^0]: Date: 11 October, 2010.

