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We follow chapter 5 of [1]. Nakayama algebras are finite-dimensional
and representation-finite algebras that have a nice representation theory in
the sense that the finite-dimensional indecomposable modules are easy to
describe. In particular, we will show that these algebras are characterized
by the property that any indecomposable module has a unique composition
series. For a basic and connected algebra, Nakayama is equivalent to an
easily-checked condition on the underlying quiver.

Throughout these notes, A is a finite-dimensional algebra over a field k
and A−mod is the category of finite-dimensional left A-modules.

1. Loewy length

For M ∈ A−mod, define the radical series of M to be

0 ⊂ · · · ⊂ rad2M ⊂ radM ⊂M.

For M 6= 0, radM is properly contained in M , and since dimkM < ∞,
the radical series of M is finite. We denote by r`(M) the length of the
radical series of M . Note that radiM = (radA)i.M , so radiA = (radA)i and
r`(M) ≤ r`(A).

Define the socle series of M inductively: soc0M := 0, and

soci+1M := π−1soc(M/sociM)

where π : M →M/sociM is the quotient map, i.e.

soci+1M/sociM ∼= soc(M/sociM).

Since dimkM <∞, socM 6= 0 if M 6= 0 and the socle series

0 ⊂ socM ⊂ soc2M ⊂ · · · ⊂M

is finite. Denote by s`(M) the length of the socle series of M .

Remark 1.1. For i ≥ 1, soci+1M is the pull-back of M
π−→ M/sociM ←↩

soc(M/sociM):

(1) 0 // sociM // soci+1M // soc(M/sociM) // 0

0 // sociM // M
��

� _

π // M/sociM
��

� _

// 0

1
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Lemma 1.2. Let M ∈ A−mod. For m ∈M and i ≥ 1, m ∈ sociM if and
only if radiA.m = 0.

Proof. We use induction. Suppose the result holds for all i ≤ n. For π :
M →M/socn(M) the quotient map,

m ∈ socn+1M ks +3 π(m) ∈ soc(M/socn(M)) ks +3 radA.π(m) = 0
KS

��
radn+1A.m = 0 radA.m ⊂ socnM+3ks

Thus the result holds for i = n + 1. It remains to show that m ∈ socM ⇔
radA.m = 0.

Suppose m ∈ socM . Then m ∈
∑

j Sj a finite sum of nonzero simple
submodules of M . By Nakayama’s lemma, radA.Sj 6= Sj , so radA.Sj = 0
for each j. Thus radA.m = 0.

Suppose radA.m = 0. Let N = A.m the cyclic submodule generated by
m. Note that radN = radA.(A.m) = 0, so N ∼= N/radN is semisimple.
Thus N ⊂ socM , i.e. m ∈ socM . �

Example 1.3. Let Q be the quiver
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and A = kQ the path algebra. Let M be the representation
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Then M has radical series
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and socle series
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Note that the series are different. However, it is true that s`(M) = r`(M)
in general, which we now show.

Lemma 1.4 (V.1.1). If f : M → N is a morphism in A − mod, then
f(radiM) ⊂ radiN for all i ≥ 0. If f is epic, then f(radiM) = radiN for
all i ≥ 0.

Proof. We use induction. The result holds for i = 0. Suppose the result for
i. Then

f(radi+1M) = f
(
rad(radiM)

)
= f(radA.radiM) = radA.f(radiM).

The result follows since radA.N = radN . �

Corollary 1.5 (V.1.2). Let 0→ L
f−→M

g−→ N → 0 be an exact sequence in
A−mod. Then r`(M) ≥ max{r`(L), r`(N)}.

Proof. By the previous result, f(radiL) ⊆ radiM and g(radiM) = radiN .
So radiM = 0 implies radiL = radiN = 0. �

Remark 1.6. In the previous result, exactness at M is not required.

Recall the duality functor D : A−mod→ Aop−mod, DM = Homk(M,k).

Lemma 1.7. For M ∈ A−mod and i ≥ 0, sociDM ∼= D(M/radiM).

Proof. Since soc0DM = 0 and rad0M = M , the result holds for i = 0. Now
suppose i ≥ 1. Note that

D(M/radiM) ∼= ker(DM → DradiM,f 7→ fι)

where ι is the inclusion radiM ↪→M .
Suppose f ∈ DM such that fι = 0. For a ∈ radiA and m ∈M ,

f.a(m) = f(a.m) = fι(a.m) = 0.

Thus f.radiA = 0, so by Lemma 1.2, f ∈ sociDM .
Suppose f ∈ sociDM . Then by Lemma 1.2, f.(radA)i = 0. For a.m ∈

(radA)i.M = radiM ,

fι(a.m) = fι.a(m) = (f.a)ι(m) = 0,

so fι = 0. The result follows. �

Corollary 1.8. For M ∈ A−mod, s`(DM) = r`(M).

Proof. By the previous result, socnDM = DM if and only if M/radnM =
M , that is, radnM = 0. �

Proposition 1.9 (V.1.3). For M ∈ A−mod, r`(M) = s`(M).

Proof. We first prove that s`(M) ≤ r`(M) by induction on s`(M). Since

s`(M) = 0⇔M = 0⇔ r`(M) = 0,

the result holds for s`(M) = 0.
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Suppose s`(X) ≤ r`(X) for all X ∈ A−mod such that s`(X) = i ≥ 0 and
suppose s`(M) = i + 1. Then r`(M) = j > 0 and radj−1M is semisimple
since radradj−1M = 0. Thus radj−1M ⊂ socM , so there is an epimorphism

M/radj−1M �M/socM.

By Lemma 1.4,
r`(M/radj−1M) ≥ r`(M/socM).

By the induction hypothesis, s`(M/socM) ≤ r`(M/socM). Since

rad(M/radj−1M) ∼= radM/radj−1M,

we have that
r`(M/radj−1M) = r`(M)− 1,

and since soc(M/socM) ∼= soc2M/socM ,

s`(M/socM) = s`(M)− 1.

Then

r`(M)− 1 ≥ r`(M/socM) ≥ s`(M/socM) = s`(M)− 1.

Thus s`(M) ≤ r`(M).
By Corollary 1.8,

r`(M) = s`(DM) ≤ r`(DM) = s`(DDM) = s`(M).

Thus r`(M) = s`(M). �

Definition 1.10. We define the Loewy length ``(M) := r`(M) = s`(M).

Since rad(M ⊕ N) = radM ⊕ radN , we have that ``(M1 ⊕ · · · ⊕Mn) =
max{``(M1), . . . , ``(Mn)}.

2. Uniserial modules and algebras

Definition 2.1. We say M ∈ A − mod is uniserial if it has a unique
composition series, i.e. if the submodule lattice of M is a chain.

If M is uniserial, then so is any submodule and any quotient of M , and
M is indecomposable.

Remark 2.2. If M ∈ A−mod is uniserial, then M has a unique maximal
submodule, namely radM , and a unique simple submodule, namely socM .

Remark 2.3. The book now says that a uniserial module is determined by
its composition series up to isomorphism, that is, if M and N are uniserial
modules that have the same composition factors in the same place, then
M ∼= N . The book goes on to say that the proof is an obvious induction,
but I don’t see it.

Lemma 2.4 (V.2.2). Suppose M ∈ A−mod. The following are equivalent:

(1) M is uniserial,
(2) the radical series of M is a composition series,
(3) the socle series of M is a composition series,
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(4) `(M) = ``(M).

Proof. (1⇒ 3) Suppose M is uniserial. Since M/sociM is uniserial,

soci+1M/sociM ∼= soc(M/sociM)

is simple.
(3⇒ 4) clear.
(4 ⇒ 2) Let n = `(M) = ``(M). If n = 0 or 1, the radical series is a

composition series, so suppose n > 1. Consider the exact sequence

0→ radM →M →M/radM → 0.

Then `(M) = `(M/radM) + `(radM). Continuing in this fashion, we get

`(M) =
n−1∑
i=0

`(radiM/radi+1M) = n.

For 0 ≤ i < n − 1, radiM is nonzero so radiM/radi+1M is nonzero. Then
`(radiM/radi+1M).

(2⇒ 1) Suppose the radical series

0 = radnM ⊂ · · · rad2M ⊂ radM ⊂M
is a composition series, and let

0 = Nn ⊂ · · ·N2 ⊂ N1 ⊂M
be a composition series. We show by induction that Ni = radiM for all
0 ≤ i ≤ n. The result holds for i = 0. Suppose the result holds for some
0 ≤ i < n. Since the radical series is a composition series, radiM/radi+1M is
simple, so Ni = radiM has a unique maximal submodule, namely radi+1M .
Thus Ni+1 = radi+1M , and M is uniserial. �

Definition 2.5. We say A is left (resp. right) serial if every indecom-
posable projective left (resp. right) A-module is uniserial.

Lemma 2.6 (V.2.5). An algebra A is left serial if and only if for each
indecomposable projective P , radP/rad2P is simple or zero.

Proof. (⇒) By Lemma 2.4, the radical series of P is a composition series.
(⇐) Consider the radical series

0 = radnP ⊂ · · · ⊂ rad2P ⊂ radP ⊂ P.
We show by induction that radi−1P/radiP is simple or zero for 1 ≤ i < n.
The result holds for i = 1 by (I.5.17) and for i = 2 by hypothesis.

Suppose the result holds for some 2 ≤ i < n. Let f : P ′ → radi−1P
be a projective cover and π : radi−1P → radi−1P/radiP the quotient
map. Note that πf is surjective and kerπf = f−1radiP . By Lemma 1.4,
f(radP ′) = radiP , and if f(p1) = f(p2) ∈ radiP for p1 ∈ radP ′, then
p1 − p2 ∈ ker f . Thus kerπf = radP ′ + ker f , so kerπf is minimal and
πf : P ′ → radi−1P/radiP is a projective cover. By the induction hypothesis,
radi−1P/radiP is simple so P ′ is indecomposable by (I.5.17). From Lemma
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1.4 we get epimorphisms f1 : radP ′ → radiP and f2 : rad2P ′ → radi+1P by
restricting f . There is an epimorphism h : radP ′/rad2P ′ → radiP/radi+1P
making the diagram

0 // rad2P ′ //

f2

��

radP ′

f1

��

// radP ′/rad2P ′ //

h
���
�
�

0

0 // radi+1P // radiP // radiP/radi+1P // 0

commute. Since P ′ is indecomposable projective, radP ′/rad2P ′ is simple or
zero by the induction hypothesis. Thus so is radiP/radi+1P . �

Theorem 2.7 (V.2.6). A basic k-algebra A is left serial if and only if for
every vertex a in the underlying quiver QA of A, there is at most one arrow
with source a.

Proof. By Lemma 2.6, A is left serial if and only if, for every a ∈ (QA)0, the
left A-module

radP (a)/rad2P (a) ∼= (radA/rad2A)ea

is simple or zero, i.e. 1-dimensional since A is basic. The result follows since

(radA/rad2A)ea ∼=
⊕

b∈(QA)0

eb(radA/rad2A)ea

and

dimk eb(radA/rad2A)ea = |{a→ b ∈ (QA)1}|.
�

Corollary 2.8. A basic k-algebra A is right serial if and only if for every
vertex a in the underlying quiver QA of A, there is at most one arrow with
sink a.

Proof. Since the right projective A-modules are the left projective Aop-
modules, A is right serial if and only if Aop is left serial. The result follows
from the theorem since QAop = (QA)op. �

Remark 2.9. The results above give conditions only on the underlying
quiver, not on the admissible ideals (except that the algebra need be finite-
dimensional).

3. Nakayama algebras

Definition 3.1. We say A is a Nakayama algebra if it is both left and
right serial, i.e. the indecomposable projectives and indecomposable injec-
tives are uniserial.

Theorem 3.2 (V.3.2). A basic and connected algebra A is a Nakayama
algebra if and only if the underlying quiver QA is

1 // 2 // · · · // n
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or

1




2

++

n

kk

· · ·

JJ

Proof. This follows from Theorem 2.7 and Corollary 2.8. �

Remark 3.3. This previous result is a condition simply on the underlying
quiver of A (except that for the second quiver, a power of the cycle has to
be in the admissible ideal since A is finite-dimensional).

Lemma 3.4 (V.3.3). Let A be an algebra and J a proper 2-sided ideal.

(1) If A is left (or right) serial then so is A/J .
(2) If A is Nakayama then so is A/J .

Proof. Suppose A is left serial. Write A =
⊕

i Pi, each Pi indecomposable.
Then A/J ∼=

⊕
i Pi/JPi. Since A is left serial, Pi is uniserial, thus so is

Pi/JPi. Then Pi/JPi is indecomposable, so A/J is left serial.
The result for right serial follows similarly, and 2 follows easily from 1. �

Note that socM ∼= socE(M) for E the injective envelope of M .

Lemma 3.5 (V.3.4). Let A be Nakayama and P ∈ A − mod an indecom-
posable projective such that ``(P ) = ``(A). Then P is also injective.

Proof. Let u : P → E be an injective envelope. Since P is uniserial, socP
is simple, thus so is socE ∼= socP . Thus E is indecomposable. Since A is
Nakayama, E is uniserial and

``(A) = `(P ) ≤ `(E) = ``(E) ≤ ``(A).

Thus `(P ) = `(E) and P ∼= E. �

Theorem 3.6 (V.3.5). Let A be Nakayama, M ∈ A−mod indecomposable
and t = ``(M). There exists an indecomposable projective P ∈ A − mod
such that M ∼= P/radtP . In particular, A is representation-finite.

Remark 3.7. The book supposes in addition that A is basic and connected.
I don’t see where these conditions are used.

Proof. Since ``(M) = t, radtM = radtA.M = 0 so M is naturally a left
A/radtA-module (write B = A/radtA). Since radt−1 6= 0, radt−1A 6= 0 so
``(B) = t. Since A is Nakayama, B is Nakayama by Lemma 3.4, and we
decompose B into its indecomposable projectives

B ∼= ⊕iPi/radtPi
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where A = ⊕iPi with each Pi indecomposable. Let f : ⊕rj=1P
′
j → M be a

projective cover in B −mod with each P ′j indecomposable. Since

t = ``(B) ≥ max{``(P ′1), . . . , ``(P ′r)} ≥ ``(M) = t,

``(P ′j) = t for some j. Rearrange the P ′js so that ``(P ′j) = t for all j ≤ s, so

``(P ′j) < t for all j > s.

Write fj = f |P ′
j
. Suppose no fj is injective for j ≤ s. Then

``(Imfj) = ``(P ′j/Kerfj) < t

for all j. Since
r⊕
j=1

Imfj →M

is surjective, ``(M) < t by Lemma 1.4, a contradiction. Thus fq is injective
for some q ≤ s. By Lemma 3.5, P ′j is injective since ``(P ′q) = t = ``(B).
Thus fq is a section. Since M is indecomposable, fq is an isomorphism, and

M ∼= P ′q = Pi/radtPi

for some i. �

Corollary 3.8. An algebra A is Nakayama if and only if every indecom-
posable A-module is uniserial.

Example 3.9. Let Q be the quiver

1
α // 2

β // 3
γ // 4

with relation γβα = 0. Then all the indecomposable A-modules are

i Pi Pi/radPi Pi/rad2Pi Pi/rad3Pi

1 kkk0 k000 kk00 P1

2 0kkk 0k00 0kk0 P2

3 00kk 00k0 P3

4 000k P4
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