NAKAYAMA ALGEBRAS

GAUTAM SISODIA MAY 26, 2011

We follow chapter 5 of [1]. Nakayama algebras are finite-dimensional and representation-finite algebras that have a nice representation theory in the sense that the finite-dimensional indecomposable modules are easy to describe. In particular, we will show that these algebras are characterized by the property that any indecomposable module has a unique composition series. For a basic and connected algebra, Nakayama is equivalent to an easily-checked condition on the underlying quiver.

Throughout these notes, A is a finite-dimensional algebra over a field k and A - mod is the category of finite-dimensional left A-modules.

1. LOEWY LENGTH

For $M \in A - \text{mod}$, define the **radical series** of M to be

$$0 \subset \cdots \subset \operatorname{rad}^2 M \subset \operatorname{rad} M \subset M.$$

For $M \neq 0$, radM is properly contained in M, and since $\dim_k M < \infty$, the radical series of M is finite. We denote by $r\ell(M)$ the length of the radical series of M. Note that $\operatorname{rad}^i M = (\operatorname{rad} A)^i M$, so $\operatorname{rad}^i A = (\operatorname{rad} A)^i$ and $r\ell(M) \leq r\ell(A)$.

Define the **socle series** of M inductively: $soc^0 M := 0$, and

 $\operatorname{soc}^{i+1} M := \pi^{-1} \operatorname{soc}(M/\operatorname{soc}^{i} M)$

where $\pi: M \to M/\operatorname{soc}^{i} M$ is the quotient map, i.e.

$$\operatorname{soc}^{i+1} M / \operatorname{soc}^{i} M \cong \operatorname{soc}(M / \operatorname{soc}^{i} M).$$

Since $\dim_k M < \infty$, $\operatorname{soc} M \neq 0$ if $M \neq 0$ and the socle series

$$0 \subset \operatorname{soc} M \subset \operatorname{soc}^2 M \subset \cdots \subset M$$

is finite. Denote by $s\ell(M)$ the length of the socle series of M.

Remark 1.1. For $i \ge 1$, $\operatorname{soc}^{i+1}M$ is the pull-back of $M \xrightarrow{\pi} M/\operatorname{soc}^{i}M \leftrightarrow \operatorname{soc}(M/\operatorname{soc}^{i}M)$:

Lemma 1.2. Let $M \in A - \text{mod.}$ For $m \in M$ and $i \ge 1$, $m \in \text{soc}^i M$ if and only if $\text{rad}^i A.m = 0$.

Proof. We use induction. Suppose the result holds for all $i \leq n$. For $\pi : M \to M/\operatorname{soc}^n(M)$ the quotient map,

Thus the result holds for i = n + 1. It remains to show that $m \in \operatorname{soc} M \Leftrightarrow \operatorname{rad} A.m = 0$.

Suppose $m \in \text{soc}M$. Then $m \in \sum_j S_j$ a finite sum of nonzero simple submodules of M. By Nakayama's lemma, $\operatorname{rad}A.S_j \neq S_j$, so $\operatorname{rad}A.S_j = 0$ for each j. Thus $\operatorname{rad}A.m = 0$.

Suppose rad A.m = 0. Let N = A.m the cyclic submodule generated by m. Note that rad N = rad A.(A.m) = 0, so $N \cong N/rad N$ is semisimple. Thus $N \subset soc M$, i.e. $m \in soc M$.

Example 1.3. Let Q be the quiver

and A = kQ the path algebra. Let M be the representation

Then M has radical series

$$0 \quad \subset \quad k \stackrel{0}{\swarrow} \stackrel{0}{\longleftarrow} \quad C \quad k \stackrel{0}{\longleftarrow} \stackrel{0}{\longleftarrow} \quad C \quad M$$

and socle series

$$0 \quad \subset \quad k \stackrel{0}{\swarrow} \stackrel{0}{\swarrow} \quad \subset \quad k \stackrel{1}{\swarrow} \stackrel{k}{\searrow} \quad 0 \quad \subset \quad M$$

Note that the series are different. However, it is true that $s\ell(M) = r\ell(M)$ in general, which we now show.

Lemma 1.4 (V.1.1). If $f : M \to N$ is a morphism in A - mod, then $f(\operatorname{rad}^{i} M) \subset \operatorname{rad}^{i} N$ for all $i \geq 0$. If f is epic, then $f(\operatorname{rad}^{i} M) = \operatorname{rad}^{i} N$ for all $i \geq 0$.

Proof. We use induction. The result holds for i = 0. Suppose the result for i. Then

$$f(\operatorname{rad}^{i+1}M) = f\left(\operatorname{rad}(\operatorname{rad}^{i}M)\right) = f(\operatorname{rad}A.\operatorname{rad}^{i}M) = \operatorname{rad}A.f(\operatorname{rad}^{i}M).$$

The result follows since radA.N = radN.

Corollary 1.5 (V.1.2). Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be an exact sequence in A - mod. Then $r\ell(M) \ge \max\{r\ell(L), r\ell(N)\}$.

Proof. By the previous result, $f(\operatorname{rad}^{i}L) \subseteq \operatorname{rad}^{i}M$ and $g(\operatorname{rad}^{i}M) = \operatorname{rad}^{i}N$. So $\operatorname{rad}^{i}M = 0$ implies $\operatorname{rad}^{i}L = \operatorname{rad}^{i}N = 0$.

Remark 1.6. In the previous result, exactness at M is not required.

Recall the duality functor $D: A - \text{mod} \to A^{op} - \text{mod}, DM = \text{Hom}_k(M, k).$

Lemma 1.7. For $M \in A - \text{mod } and i \ge 0$, $\operatorname{soc}^i DM \cong D(M/\operatorname{rad}^i M)$.

Proof. Since $\operatorname{soc}^0 DM = 0$ and $\operatorname{rad}^0 M = M$, the result holds for i = 0. Now suppose $i \ge 1$. Note that

$$D(M/\mathrm{rad}^{i}M) \cong \ker(DM \to D\mathrm{rad}^{i}M, f \mapsto f\iota)$$

where ι is the inclusion $\operatorname{rad}^i M \hookrightarrow M$.

Suppose $f \in DM$ such that $f\iota = 0$. For $a \in \operatorname{rad}^i A$ and $m \in M$,

$$f.a(m) = f(a.m) = f\iota(a.m) = 0.$$

Thus $f.rad^{i}A = 0$, so by Lemma 1.2, $f \in soc^{i}DM$.

Suppose $f \in \operatorname{soc}^i DM$. Then by Lemma 1.2, $f.(\operatorname{rad} A)^i = 0$. For $a.m \in (\operatorname{rad} A)^i.M = \operatorname{rad}^i M$,

$$f\iota(a.m) = f\iota.a(m) = (f.a)\iota(m) = 0,$$

so $f\iota = 0$. The result follows.

Corollary 1.8. For $M \in A - \text{mod}$, $s\ell(DM) = r\ell(M)$.

Proof. By the previous result, $\operatorname{soc}^n DM = DM$ if and only if $M/\operatorname{rad}^n M = M$, that is, $\operatorname{rad}^n M = 0$.

Proposition 1.9 (V.1.3). For $M \in A - \text{mod}$, $r\ell(M) = s\ell(M)$.

Proof. We first prove that $s\ell(M) \leq r\ell(M)$ by induction on $s\ell(M)$. Since

$$s\ell(M) = 0 \Leftrightarrow M = 0 \Leftrightarrow r\ell(M) = 0,$$

the result holds for $s\ell(M) = 0$.

Suppose $s\ell(X) \leq r\ell(X)$ for all $X \in A - \text{mod}$ such that $s\ell(X) = i \geq 0$ and suppose $s\ell(M) = i + 1$. Then $r\ell(M) = j > 0$ and $\operatorname{rad}^{j-1}M$ is semisimple since $\operatorname{radrad}^{j-1}M = 0$. Thus $\operatorname{rad}^{j-1}M \subset \operatorname{soc}M$, so there is an epimorphism $M/\operatorname{rad}^{j-1}M \to M/\operatorname{soc}M$.

By Lemma 1.4,

 $r\ell(M/\mathrm{rad}^{j-1}M) \ge r\ell(M/\mathrm{soc}M).$

By the induction hypothesis, $s\ell(M/\text{soc}M) \leq r\ell(M/\text{soc}M)$. Since

 $\operatorname{rad}(M/\operatorname{rad}^{j-1}M) \cong \operatorname{rad}M/\operatorname{rad}^{j-1}M,$

we have that

$$r\ell(M/\mathrm{rad}^{j-1}M) = r\ell(M) - 1$$

and since $\operatorname{soc}(M/\operatorname{soc} M) \cong \operatorname{soc}^2 M/\operatorname{soc} M$,

$$s\ell(M/\mathrm{soc}M) = s\ell(M) - 1.$$

Then

$$r\ell(M) - 1 \ge r\ell(M/\mathrm{soc}M) \ge s\ell(M/\mathrm{soc}M) = s\ell(M) - 1.$$

Thus $s\ell(M) \leq r\ell(M)$.

By Corollary 1.8,

$$r\ell(M) = s\ell(DM) \le r\ell(DM) = s\ell(DDM) = s\ell(M).$$

 \square

Thus $r\ell(M) = s\ell(M)$.

Definition 1.10. We define the **Loewy length**
$$\ell\ell(M) := r\ell(M) = s\ell(M)$$

Since $\operatorname{rad}(M \oplus N) = \operatorname{rad}M \oplus \operatorname{rad}N$, we have that $\ell\ell(M_1 \oplus \cdots \oplus M_n) = \max\{\ell\ell(M_1), \ldots, \ell\ell(M_n)\}.$

2. Uniserial modules and algebras

Definition 2.1. We say $M \in A - \text{mod}$ is **uniserial** if it has a unique composition series, i.e. if the submodule lattice of M is a chain.

If M is uniserial, then so is any submodule and any quotient of M, and M is indecomposable.

Remark 2.2. If $M \in A - \text{mod}$ is uniserial, then M has a unique maximal submodule, namely radM, and a unique simple submodule, namely socM.

Remark 2.3. The book now says that a uniserial module is determined by its composition series up to isomorphism, that is, if M and N are uniserial modules that have the same composition factors in the same place, then $M \cong N$. The book goes on to say that the proof is an obvious induction, but I don't see it.

Lemma 2.4 (V.2.2). Suppose $M \in A - \text{mod}$. The following are equivalent:

- (1) M is uniserial,
- (2) the radical series of M is a composition series,
- (3) the socle series of M is a composition series,

$$(4) \ \ell(M) = \ell\ell(M).$$

Proof. $(1 \Rightarrow 3)$ Suppose M is uniserial. Since $M/\operatorname{soc}^{i} M$ is uniserial, $\operatorname{soc}^{i+1} M/\operatorname{soc}^{i} M \cong \operatorname{soc}(M/\operatorname{soc}^{i} M)$

is simple.

 $(3 \Rightarrow 4)$ clear.

 $(4 \Rightarrow 2)$ Let $n = \ell(M) = \ell\ell(M)$. If n = 0 or 1, the radical series is a composition series, so suppose n > 1. Consider the exact sequence

 $0 \rightarrow \operatorname{rad} M \rightarrow M \rightarrow M/\operatorname{rad} M \rightarrow 0.$

Then $\ell(M) = \ell(M/\mathrm{rad}M) + \ell(\mathrm{rad}M)$. Continuing in this fashion, we get

$$\ell(M) = \sum_{i=0}^{n-1} \ell(\operatorname{rad}^{i} M/\operatorname{rad}^{i+1} M) = n.$$

For $0 \leq i < n-1$, rad^{*i*}*M* is nonzero so rad^{*i*}*M*/rad^{*i*+1}*M* is nonzero. Then $\ell(\operatorname{rad}^{i}M/\operatorname{rad}^{i+1}M)$.

 $(2 \Rightarrow 1)$ Suppose the radical series

$$0 = \operatorname{rad}^n M \subset \cdots \operatorname{rad}^2 M \subset \operatorname{rad} M \subset M$$

is a composition series, and let

$$0 = N_n \subset \cdots N_2 \subset N_1 \subset M$$

be a composition series. We show by induction that $N_i = \operatorname{rad}^i M$ for all $0 \leq i \leq n$. The result holds for i = 0. Suppose the result holds for some $0 \leq i < n$. Since the radical series is a composition series, $\operatorname{rad}^i M/\operatorname{rad}^{i+1} M$ is simple, so $N_i = \operatorname{rad}^i M$ has a unique maximal submodule, namely $\operatorname{rad}^{i+1} M$. Thus $N_{i+1} = \operatorname{rad}^{i+1} M$, and M is uniserial. \Box

Definition 2.5. We say A is **left (resp. right) serial** if every indecomposable projective left (resp. right) A-module is uniserial.

Lemma 2.6 (V.2.5). An algebra A is left serial if and only if for each indecomposable projective P, $radP/rad^2P$ is simple or zero.

Proof. (\Rightarrow) By Lemma 2.4, the radical series of P is a composition series. (\Leftarrow) Consider the radical series

$$0 = \operatorname{rad}^n P \subset \cdots \subset \operatorname{rad}^2 P \subset \operatorname{rad} P \subset P.$$

We show by induction that $\operatorname{rad}^{i-1} P/\operatorname{rad}^{i} P$ is simple or zero for $1 \leq i < n$. The result holds for i = 1 by (I.5.17) and for i = 2 by hypothesis.

Suppose the result holds for some $2 \leq i < n$. Let $f: P' \to \operatorname{rad}^{i-1}P$ be a projective cover and $\pi: \operatorname{rad}^{i-1}P \to \operatorname{rad}^{i-1}P/\operatorname{rad}^{i}P$ the quotient map. Note that πf is surjective and $\ker \pi f = f^{-1}\operatorname{rad}^{i}P$. By Lemma 1.4, $f(\operatorname{rad} P') = \operatorname{rad}^{i}P$, and if $f(p_1) = f(p_2) \in \operatorname{rad}^{i}P$ for $p_1 \in \operatorname{rad} P'$, then $p_1 - p_2 \in \ker f$. Thus $\ker \pi f = \operatorname{rad} P' + \ker f$, so $\ker \pi f$ is minimal and $\pi f: P' \to \operatorname{rad}^{i-1}P/\operatorname{rad}^{i}P$ is a projective cover. By the induction hypothesis, $\operatorname{rad}^{i-1}P/\operatorname{rad}^{i}P$ is simple so P' is indecomposable by (I.5.17). From Lemma 1.4 we get epimorphisms $f_1 : \operatorname{rad} P' \to \operatorname{rad}^i P$ and $f_2 : \operatorname{rad}^2 P' \to \operatorname{rad}^{i+1} P$ by restricting f. There is an epimorphism $h : \operatorname{rad} P'/\operatorname{rad}^2 P' \to \operatorname{rad}^i P/\operatorname{rad}^{i+1} P$ making the diagram

commute. Since P' is indecomposable projective, $\operatorname{rad} P'/\operatorname{rad}^2 P'$ is simple or zero by the induction hypothesis. Thus so is $\operatorname{rad}^i P/\operatorname{rad}^{i+1} P$.

Theorem 2.7 (V.2.6). A basic k-algebra A is left serial if and only if for every vertex a in the underlying quiver Q_A of A, there is at most one arrow with source a.

Proof. By Lemma 2.6, A is left serial if and only if, for every $a \in (Q_A)_0$, the left A-module

$$\operatorname{rad}P(a)/\operatorname{rad}^2P(a) \cong (\operatorname{rad}A/\operatorname{rad}^2A)e_a$$

is simple or zero, i.e. 1-dimensional since A is basic. The result follows since

$$(\operatorname{rad} A/\operatorname{rad}^2 A)e_a \cong \bigoplus_{b \in (Q_A)_0} e_b(\operatorname{rad} A/\operatorname{rad}^2 A)e_a$$

and

$$\dim_k e_b(\operatorname{rad} A/\operatorname{rad}^2 A)e_a = |\{a \to b \in (Q_A)_1\}|.$$

Corollary 2.8. A basic k-algebra A is right serial if and only if for every vertex a in the underlying quiver Q_A of A, there is at most one arrow with sink a.

Proof. Since the right projective A-modules are the left projective A^{op} -modules, A is right serial if and only if A^{op} is left serial. The result follows from the theorem since $Q_{A^{op}} = (Q_A)^{op}$.

Remark 2.9. The results above give conditions only on the underlying quiver, not on the admissible ideals (except that the algebra need be finite-dimensional).

3. Nakayama algebras

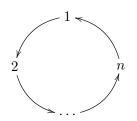
Definition 3.1. We say A is a **Nakayama algebra** if it is both left and right serial, i.e. the indecomposable projectives and indecomposable injectives are uniserial.

Theorem 3.2 (V.3.2). A basic and connected algebra A is a Nakayama algebra if and only if the underlying quiver Q_A is

 $1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$

7

or



Proof. This follows from Theorem 2.7 and Corollary 2.8.

Remark 3.3. This previous result is a condition simply on the underlying quiver of A (except that for the second quiver, a power of the cycle has to be in the admissible ideal since A is finite-dimensional).

Lemma 3.4 (V.3.3). Let A be an algebra and J a proper 2-sided ideal.

(1) If A is left (or right) serial then so is A/J.

(2) If A is Nakayama then so is A/J.

Proof. Suppose A is left serial. Write $A = \bigoplus_i P_i$, each P_i indecomposable. Then $A/J \cong \bigoplus_i P_i/JP_i$. Since A is left serial, P_i is uniserial, thus so is P_i/JP_i . Then P_i/JP_i is indecomposable, so A/J is left serial.

The result for right serial follows similarly, and 2 follows easily from 1. $\hfill \square$

Note that $\operatorname{soc} M \cong \operatorname{soc} E(M)$ for E the injective envelope of M.

Lemma 3.5 (V.3.4). Let A be Nakayama and $P \in A - \text{mod } an indecomposable projective such that <math>\ell\ell(P) = \ell\ell(A)$. Then P is also injective.

Proof. Let $u: P \to E$ be an injective envelope. Since P is uniserial, socP is simple, thus so is soc $E \cong \text{soc}P$. Thus E is indecomposable. Since A is Nakayama, E is uniserial and

$$\ell\ell(A) = \ell(P) \le \ell(E) = \ell\ell(E) \le \ell\ell(A).$$

Thus $\ell(P) = \ell(E)$ and $P \cong E$.

Theorem 3.6 (V.3.5). Let A be Nakayama, $M \in A - \text{mod indecomposable}$ and $t = \ell\ell(M)$. There exists an indecomposable projective $P \in A - \text{mod}$ such that $M \cong P/\text{rad}^t P$. In particular, A is representation-finite.

Remark 3.7. The book supposes in addition that *A* is basic and connected. I don't see where these conditions are used.

Proof. Since $\ell\ell(M) = t$, $\operatorname{rad}^t M = \operatorname{rad}^t A.M = 0$ so M is naturally a left $A/\operatorname{rad}^t A$ -module (write $B = A/\operatorname{rad}^t A$). Since $\operatorname{rad}^{t-1} \neq 0$, $\operatorname{rad}^{t-1} A \neq 0$ so $\ell\ell(B) = t$. Since A is Nakayama, B is Nakayama by Lemma 3.4, and we decompose B into its indecomposable projectives

$$B \cong \bigoplus_i P_i / \operatorname{rad}^t P_i$$

where $A = \bigoplus_i P_i$ with each P_i indecomposable. Let $f : \bigoplus_{j=1}^r P'_j \to M$ be a projective cover in B – mod with each P'_j indecomposable. Since

$$t = \ell\ell(B) \ge \max\{\ell\ell(P'_1), \dots, \ell\ell(P'_r)\} \ge \ell\ell(M) = t_1$$

 $\ell\ell(P'_j) = t$ for some j. Rearrange the P'_j s so that $\ell\ell(P'_j) = t$ for all $j \leq s$, so $\ell\ell(P'_j) < t$ for all j > s.

Write $f_j = f \mid_{P'_i}$. Suppose no f_j is injective for $j \leq s$. Then

$$\ell\ell(\operatorname{Im} f_j) = \ell\ell(P'_j/\operatorname{Ker} f_j) < t$$

for all j. Since

$$\bigoplus_{j=1}^r \operatorname{Im} f_j \to M$$

is surjective, $\ell\ell(M) < t$ by Lemma 1.4, a contradiction. Thus f_q is injective for some $q \leq s$. By Lemma 3.5, P'_j is injective since $\ell\ell(P'_q) = t = \ell\ell(B)$. Thus f_q is a section. Since M is indecomposable, f_q is an isomorphism, and

$$M \cong P'_a = P_i / \operatorname{rad}^t P_i$$

for some i.

Corollary 3.8. An algebra A is Nakayama if and only if every indecomposable A-module is uniserial.

Example 3.9. Let Q be the quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4$$

with relation $\gamma\beta\alpha = 0$. Then all the indecomposable A-modules are

i	P_i	$P_i/\mathrm{rad}P_i$	$P_i/\mathrm{rad}^2 P_i$	$P_i/\mathrm{rad}^3 P_i$
1	kkk0	k000	kk00	P_1
2	0kkk	0k00	0kk0	P_2
3	00kk	00k0	P_3	
4	000k	P_4		

References

[1] Ibrahim Assem, Daniel Simon, Andrzel Skowronski, *Elements of the representation theory of associative algebras.*