1 Representations of quivers

1.1 Definitions

Let Q be a quiver, k a field. A representation X of Q is given by:

- for each $i \in Q_{0}$, a k-vector space X_{i}, and
- for each $i \xrightarrow{\alpha} j \in Q_{1}$, a linear map $X_{\alpha}: X_{i} \rightarrow X_{j}$.

A morphism $\theta: X \rightarrow Y$ between representations X, Y is given by linear maps $\theta_{i}: X_{i} \rightarrow Y_{i}$ for each $i \in Q_{0}$ such that for all $\alpha \in Q_{1}$,

commutes.
Denote by $\operatorname{Hom}(X, Y)$ the vector space of morphisms $X \rightarrow Y$.

1.2 Examples

Example 1.1. Let $Q=1 \longleftarrow 2 \longrightarrow 3$, and consider the representations

$$
\begin{aligned}
& X=k \stackrel{1}{\longleftarrow} k \xrightarrow{1} k, \\
& Y=k \kappa^{1} k \longrightarrow 0 .
\end{aligned}
$$

What is $\operatorname{Hom}(X, Y)$? Pick $\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \operatorname{Hom}(X, Y)$. Then the following diagram commutes:

Then $\theta_{3}=0$, and for $\theta_{1}=\lambda \in k, \theta_{2}=\lambda$. Thus $\operatorname{Hom}(X, Y) \cong k$.
What is $\operatorname{Hom}(Y, X)$? Pick $\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \operatorname{Hom}(Y, X)$. Then the following diagram commutes:

Then $\theta_{3}=0$,so $\theta_{2}=0$, so $\theta_{1}=0$. Thus $\operatorname{Hom}(Y, X)=0$.

1.3 Equivalence of categories

Representations of Q with morphisms form a category $\operatorname{Rep}(Q)$. For an algebra A, let $\operatorname{Mod}(A)$ denote the category of left A-modules.

Lemma 1.2. There is an equivalence of categories

$$
\operatorname{Rep}(Q) \equiv \operatorname{Mod}(k Q)
$$

Proof. I will only give the construction. For $M \in \operatorname{Mod}(k Q)$, construct $X \in \operatorname{Rep}(Q)$ as follows:

- $X_{i}:=e_{i} \cdot M$,
- for $i \xrightarrow{\alpha} j, X_{\alpha}:=\alpha .-: e_{i} \cdot M \rightarrow e_{j} . M$. Note that

$$
\alpha \cdot\left(e_{i} \cdot m\right)=\left(\alpha e_{i}\right) \cdot m=\left(e_{j} \alpha\right) \cdot m=e_{j} \cdot(\alpha \cdot m) \in e_{j} \cdot M .
$$

For $X \in \operatorname{Rep}(Q)$, construct M as follows:

- $M:=\bigoplus_{i \in Q_{0}} X_{i}$ as a k-vector space.
- The action of $k Q$ on M is given as follows: for each $i \in Q_{0}$, let $\iota_{i}: X_{i} \hookrightarrow M$ and $\pi_{i}: M \rightarrow X_{i}$ denote the inclusion and projection maps, respectively. Pick $p=\alpha_{n} \ldots \alpha_{3} \alpha_{2} \alpha_{1}$ a path from i to j. Then for $m \in M$, define

$$
p . m=\iota_{j} \circ X_{\alpha_{m}} \circ \ldots \circ X_{\alpha_{2}} \circ X_{\alpha_{1}} \circ \pi_{i}(m) .
$$

Extend the action linearly to $k Q$.
It remains to check that these constructions give functors inverse to each other.
Example 1.3. Let $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$, and let X be the representation $X_{1} \xrightarrow{X_{\alpha}} X_{2} \xrightarrow{X_{\beta}} X_{3}$. The corresponding module is $M=X_{1} \oplus X_{2} \oplus X_{3}$. How does $\alpha \in k Q$ act on $\left(x_{1}, x_{2}, x_{3}\right) \in M$? By definition,

$$
\alpha .\left(x_{1}, x_{2}, x_{3}\right)=\iota_{2} \circ X_{\alpha} \circ \pi_{1}\left(x_{1}, x_{2}, x_{3}\right)=\iota_{2} \circ X_{\alpha}\left(x_{1}\right)=\left(0, X_{\alpha}\left(x_{1}\right), 0\right) .
$$

Similarly,

$$
\beta \alpha \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(0,0, X_{\beta} X_{\alpha}\left(x_{1}\right)\right) .
$$

It is suggestive to write

$$
k Q \cong\left(\begin{array}{ccc}
k & 0 & 0 \\
k X_{\alpha} & k & 0 \\
k X_{\beta} X_{\alpha} & k X_{\beta} & k
\end{array}\right)
$$

and the action by

$$
\left(\begin{array}{ccc}
k & 0 & 0 \\
k X_{\alpha} & k & 0 \\
k X_{\beta} X_{\alpha} & k X_{\beta} & k
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

We now ignore (or blur) the distinction between representations of a quiver Q and left modules over the path algebra $k Q$.

1.4 The simple modules

For $i \in Q_{0}$, consider the representation S_{i} of Q defined by

$$
\left(S_{i}\right)_{j}:=\delta_{i j} k
$$

for all $i \in Q_{0}$, and

$$
\left(S_{i}\right)_{\alpha}:=0
$$

for all $\alpha \in Q_{1}$.

These representations are irreducible (note that the corresponding modules are 1-dimensional). In fact, if there are no cycles in the quiver, these are all the irreducible representations (up to isomorphism).

Lemma 1.5. If Q has no cycles, then it has $\left|Q_{0}\right|$ irreducible representations (up to isomorphism).
Proof. Let $\left|Q_{0}\right|=n$. We use the following result from algebra.
Proposition 1.6. Let R be a ring, I a nilpotent ideal of R (i.e. $I^{m}=0$ for $m \gg 0$). If M is a simple left R-module then $I M=0$.

Proof. Note that $I M$ is a submodule of M. Since M is simple, $I M=0$ or $I M=M$. If $I M=M$, then $I^{m} M=M$ for all m, but $I^{m}=0$ for $m \gg 0$: a contradiction. The result follows.

Thus we have a bijection
$\{$ iso. classes of simple modules of $R\} \equiv\{$ iso. classes of simple modules of $R / I\}$.
Since Q has no cycles, $k Q$ is finite-dimensional, so $k Q_{m}=0$ for $m \gg 0$, so $\left(k Q_{\geq 1}\right)^{m}=0$ for $m \gg 0$: i.e., $k Q_{\geq 1}$ is a nilpotent ideal of $k Q$. Thus we have a bijection
\{iso. classes of simple modules of $k Q\} \equiv\left\{\right.$ iso. classes of simple modules of $\left.k Q / k Q_{\geq 1}\right\}$.
Note that

$$
k Q / k Q_{\geq 1} \cong k Q_{0} \cong k^{n} .
$$

Since k^{n} has n simple modules up to isomorphism, our result follows.

References

[1] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras: Volume 1.
[2] W. Crawley-Boevey, Lectures on Representations of Quivers.

