2. BIRATIONAL GEOMETRY OF LOG SURFACES

JANOS KOLLAR AND SANDOR KOVACS

The detailed study of log surfaces (especially for b; = 1) was initiated by the Iitaka
school, in particular [Miyanishi81], [Tsunoda83], [Miyanishi-Tsunoda83], [Fujita84]
and [Sakai84,85]. (For more references see [Miyanishi81].) Recent interest arouse
when 3-dimensional problems were reduced to questions regarding log surfaces with
fractional coefficients (cf. [Kollar et al.92], [Shokurov93]).

This chapter is devoted to the elementary properties of the birational geometry
of log surfaces and as an important part of that, the Minimal Model Program for
log surfaces.

Throughout the chapter we work over an algebraically closed field of any char-
acteristic.

2.0.1 Definition. A log surface is a pair (S, B), where S is a normal surface and
B = Zle b;B;, B; are irreducible and reduced curves and 0 < b; < 1.

2.0.2 Notation. Let X be a scheme. A Q-Cartier divisor D on X is called nef if
D.C > 0 for every proper curve C' C X. D is called big if X is proper and |mD |
gives a birational map for some m > 0. In particular ample implies nef and big.

Z1(X) denotes the free abelian group generated by irreducible reduced curves on
X and Z1(X)g = Z1(X) ®z R. All cycles numerically equivalent to the zero cycle
form a subgroup of Z;(X)r and the quotient is denoted by N (X)g.

The effective 1-cycles generate a subsemigroup NE(X) C Ny(X)g. It is called
the cone of curves of X. The closed cone of curves of X, denoted by NE(X), is
the closure of NE(X) in the Euclidean topology of Z1(X)g-

If D is an arbitrary Q-divisor, then NE(X)p>o denotes the set of vectors £ €
NE(X) such that £ - D > 0.

A log Del Pezzo surface is a log surface (S, B) such that —(Kg + B) is ample.

For the definition of Minimal Model Program (MMP), log-Minimal Model Pro-
gram (log-MMP) and log resolution see [Kollar et al.92, §2].

2.0.2.1 Remark. For surfaces numerical equivalence can be defined in two ways.
Either requiring equal intersection numbers for all curves or only for those, that
are Q-Cartier divisors. These two different definitions result in different cones.
Adopting the first one gives a possibly larger dimensional cone. The results of this
chapter hold for both versions.
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§2.1 CONE THEOREM FOR LOG SURFACES

The aim of this section is to prove the Cone Theorem for log surfaces. (In higher
dimensions further assumptions are needed cf. (2.1.5).)

2.1.1 Cone Theorem for Log Surfaces. Let (X, B) be a projective log surface,
f:Y = X a minimal resolution of singularities of X, H an ample divisor on X
and € > 0. Then

(2.1.1.1)  NE(Y) = NE(Y) j+(Ky + B+eH)>0 + > Rt [C]
C smooth rational curve.
If p(Y)>3, then C?<0.

(21.1.2)  NE(X) = NE(X)kx+B+er>o + > R*[£(C)]

C smooth rational curve.
If p(Y)>3, then C2<0.

Proof. If f : Y — X is a proper dominant morphism, then f, : NE(Y) — NE(X)
is surjective, so (2.1.1.2) follows from (2.1.1.1).

2.1.2 Lemma. LetY be a projective variety, where the usual Cone Theorem (see
e.g. [CKM88, (9.6)]) holds, H an ample Q-Cartier divisor and e > 0. Then NE(Y)
18 the smallest closed convex cone that contains the following two sets:

P
N

{[C]|C CY irreducible and C - (Ky +eH) >0}
{[C]|R* [C] is an eztremal ray of NE(Y) such that C - (Ky +¢cH) < 0}

Proof. Let n € NE(Y) be an extremal vector and let €’ be such that € > &’ > 0. If
n-(Ky +¢ H) < 0, then by the Cone Theorem some multiple of 7 is represented by
an irreducible curve, so it is in P or /. Then we may assume that n-(Ky +¢'H) > 0,
so we have - (Ky +eH) > 0.

7 is extremal, so there exist sequences of irreducible curves C} and positive
rational numbers oy, such that n = limay [Cy]. Now

hmak[Ck] . (Ky+€H) > 0,

so Ck - (Ky +€H) > 0 for k> 1 and then 7 is in the smallest closed convex cone
that contains P. O

2.1.2.1 Remark. With € = 0 this Lemma is unknown.
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2.1.3 Corollary. With the same notation and assumptions as in (2.1.2) further
assume that Ky +eHy = M — D, where D is an effective Q-divisor (Q-Cartier, if
dimY > 2). Then

NEY)=NE(Y) yso + Y, RY[C]+im[NE(SuppD)— NE(Y)]

Ky+eHy 20 C is extremal

C-(Ky+eHy)<0

Proof. The right hand side is a closed cone, so it is enough to show, that it contains
the sets P and N. It contains N trivially, so assume that C' is an irreducible curve
such that C- (M — D) =C - (Ky +eHy) > 0and C-M < 0. Then C-D < 0,
which implies, that [C'] € im [ NE(Supp D) - NE(Y)]|. O

Now we are ready to prove (2.1.3). (X, B) is a log surface, f : Y — X a minimal
resolution of singularities of X, H an ample divisor on X and ¢ > 0.
There are E1, Fs and F3 effective Q-divisors on Y such that

Ky = f*KX — E1
f'B=f*B - E,

*

Hy = f*H — Eg,
where Hy is ample on Y. (The existence of Hy and Ej3 follows from (2.2.4).) Now

Ky +eHy = f*(Kx + B+¢H) — (E; + E> +¢E3) — f,7'B.

- vy -
-~ -~

M D

Let Fj, j =1,2,...,7 be the f exceptional irreducible curves, f,'B =Y"_, b;B;
and By = )., ex,;F; for k = 1,2,3 be the irreducible decompositions of f,~ 'B
and Ei. Then by (2.1.3) we have

NE(Y)=NE(Y) kytem>o + . RY[C]+
f*(KX‘l'B‘l'EH)ZO C(Ky+€H)<O

(2_1_3,1) . . C is extremal
+3Y RT[B]+ Y R [F].
=1 j=1

Since F} are exceptional,

D RU[F |+ NEY) kyterrzo  C NE(Y)f(kx+Brem)>0-
ot F*(Kx+B+eH)>0

If B - f*(Kx + B+¢H) >0, then [B;] € NE(Y) g+(ky+B+eH)>0- Next consider
a B; such that B; - f*(Kx + B+¢H) <0. If B; - f*B <0, then B? < 0 and



4 JANOS KOLLAR AND SANDOR KOVACS

> B; -
> B; - (Ky + B;) = 2pa(B;) — 2,
so B; ~ P! and it is an extremal ray by [CKMB88, (4.5)].

If B;- f*B > 0, then

Bi-(Ky-i-é‘Hy) SBi-f*(Kx-I-SH) SBi'f*(Kx-i-B-i-&‘H) < 0.

If [ B;] is an extremal vector of NE(Y), then Rt [ B;] is an ordinary extremal ray.
If [ B; ] is not an extremal vector of the cone, then it can be dropped from the right
hand side of (2.1.3.1).

Finally let C be a (Ky + eHy )-negative extremal ray. If C? > 0, then p(X) =1
by [CKMS88, (4.4)] and the statement is trivial, otherwise C? < 0, so 2p,(C) — 2 =
C - (Ky + C) <0, thus C is a smooth rational curve. If C? = 0, then p(X) = 2 by
[CKMSS, (3.7)] (cf. (2.3.4)).

The condition on the Picard number and the self-intersection follows easily from
the log-MMP (cf. (2.3.4.4)). O

2.1.4 Corollary. Let (X, B) be a log Del Pezzo surface and f : Y — X a minimal
resolution of singularities of X. Then

NE(Y) = > Rt [E] + > Rt [C]
E is f exceptional C smooth rational curve.
If p(Y)>3, then C%<0.

Proof. —(Kx + B +¢cH) is ample, so

NE(Y) ¢+ (ky+B+eH)>0 = NE(Y) f+(Ky + B+eH)=0 = >y RY[E]. O

E is f exceptional

A higher dimensional variant of this Cone Theorem is:

2.1.5 Cone Theorem for Singular Varieties. Let (X, B) be a Q-factorial log
variety and Z C X the closed subscheme of X where (X, B) is not klt. Assume,
that the log-MMP works in dimension dim X. Then

NE(X)=NE(X)ky+p+erso+ Y, RY[C]+im[NE(Z) —» NE(X)]
C-(Ky+eH)<0

Proof. Exercise. [

Once the Cone Theorem is established, the Minimal Model Program proceeds to
contract the extremal rays. In order to achieve that, one needs vanishing results,
and that is the topic of the next section.
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§2.2 A VANISHING THEOREM FOR H'!

In dimension two, the assumptions of the generally used vanishing results (cf.
[Grauert-Riemenschneider70], [Kawamata82], [Viehweg82]) can be weakened.

2.2.1 Theorem. Let X be a 2-dimensional reqular scheme, C = U;_,C; a proper
connected curve such that the matriz (C; - C;) is negative definite. Let L be a
line bundle on X and assume, that there exist a Q-divisor N and a set of rational

numbers b;, 1 = 1,2, ... ,s with the following properties for all i:
(2.2.1.1) N-C; >0,
0<b <1,

(2.2.1.2)  one of the following § 0<b; <1 and 3j, b; #1,
0<b; <1 and Hj,N-Cj>0,

(2.2.1.3) L-Ci=(Kx+ Y bjC;+N)-Ci.

j=1
Finally let Z =Y";_, r;C;, with r; € N. Then
HY(Z,L® 0z) =0.

Proof. Let C; be contained in Z (i.e. 7; > 0), Z; = Z — C; and consider the short
exact sequence:

0-L®0c(Ci—Z) L0z - L0z — 0.

By induction on Y. r;, HY(Z;, L® Oz,) = 0.

2.2.2 Lemma. In the situation above one can find a C;, such that r; > 0 and
Hl(C’i,L & OC’i (Cz — Z)) =0.

Proof. 1t is enough to see, that there exists an % such that
L-CH—(C’Z-—Z)-(Ji >2pa(C)—2:CZ~2—{-Kx-CZ‘.
By (2.2.1.3) this is equivalent to
N-Cq;-}-(ijCj—Z)-Ci > 0.
=1

The following lemma provides the key step to find the required C;. It will be proved
after the proof of (2.2.2).
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2.2.3 Lemma. Let X and C be as in (2.2.1). Let D =% ;_,d;C; = D* — D,
where DT and D~ are the positive and negative parts of D. Assume, that D # 0
and Supp Dt # C. Then

(2.2.3.1) If D~ #0, then 3C; C Supp D™ such that D - C; > 0.
(2.2.3.2) If D~ =0, then 3C; ¢ Supp DV such that D - C; > 0.

In particular, if D - C; < 0 for all i, then D is effective and if there exists also a j
such that D - C; < 0 then D is effective and Supp D = C.

If there exists an ¢ such that r; > b;, then (2.2.3.1) implies (2.2.1). If b = r; = 1,
for all 4, such that r; # 0, then SuppZ = C'\ Supp(z:‘;:1 b;C; — Z) by (2.2.1.2).
If Z # C, then (2.2.3.2) provides the required C;. If Z = C, then there exists a j
such that N - C; > 0 by (2.2.1.2). Thus in any case we find a C;, such that

NC,+(ZbJC]—Z)Cz>O

=1

This proves (2.2.2) as well as (2.2.1). O

2.2.2.1 Remark. If we replace (2.2.1.2) with 0 < b; < 1 and further assume, that
r; > b;, then the same proof gives, that

HY(Z,L® 0z) = H' (D "b;Ci, L ® Oxrpc,)

is an isomorphism.

Proof of 2.2.3. First let D~ # 0. Then (D7)2 <0< D%-D~, s0

0<D-D” =) (-d;)D-Ci.
d; <0
Therefore (2.2.3.1) holds.
Next consider the case D™ = 0. Let 4 be such an index that d; = 0. Then

D-Ci= )Y  d;C;-C;>0.
Cj-Ci>0

Now if there exists a d; # 0 among these coefficients, then we are done, otherwise
we can repeat the same with any C; instead of the original C;. C is connected, so
this process will end. [

2.2.4 Corollary. Let X and C be as in (2.2.1). Let H be an ample divisor on X .
The there exists a set of natural numbers {r, r; |i=1,2,... s} such that r divides
det(C; - Cj) and if Z="Y";_, riC;, then —rH - C; = Z - C; for all i.

Proof. (C; - C;) is negative definite, so in particular invertible. Hence there exist
rational numbers ¢;, ¢ =1, 2,..., s that satisfy the condition. They are positive by
(2.2.3). Now let r be their common denominator and r; = ¢;r. O

The following relative vanishing result is a straightforward consequence of (2.2.1):
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2.2.5 Corollary. Let f : S — S’ be a proper, birational morphism between normal
surfaces with S smooth and with exceptional locus £ = U;_FE;. Let L be a line
bundle on S, {b; | i =1,2,...,s} a set of rational numbers satisfying the condition
(2.2.1.2), N an f-nef Q-divisor and assume that

L=Ks+)» bE;+N.

=1

Then
Rf.L =0.

Proof. The conditions of (2.2.1) are satisfied, so the Theorem on Formal Functions
implies that (R!f,L) = 0 and then R'f,L =0

To successfully run the Minimal Model Program one needs additional restrictions
on the possible singularities.

2.2.6 Definition. Let (X, B) be a log variety. B =5 b;B;, 0 <b; <1. If dim X >
3, assume, that Kx + B is Q-Cartier. Let ¥ — X be a log-resolution and E;
the irreducible components of the exceptional locus of f. By (2.2.4) there exists a
unique collection a; € Q for 1 = 1,2,...,s such that

Ky + f,'B= f*(Kx + B) + Zaz

a; is called the discrepancy of E; with respect to (X, B). The pair (X, B) is said
to be

log canonical lc a; > —1 for all ¢
purely log terminal plt if a; > —1 for all ¢
Kawamata log terminal klt a; >—land b; <1 for all ¢, 5

2.2.7 Exercise. Prove that the discrepancies do not depend on the log-resolution
chosen.

2.2.8 Fxercise. Let dim X =2, f: Y — X the minimal resolution. Prove that
either all the discrepancies of exceptional divisors with respect to (X, })) are zero
or all of them are negative. [ Hint: Use (2.2.3) ]

2.2.9 Ezercise. Let dimX = 2, f : Y — X the minimal resolution. Assume, that
every exceptional curve over x has discrepancy —1. Prove, that the exceptional
locus consists of either an irreducible curve with arithmetic genus 1 or a cycle of
smooth rational curves (i.e. a set of smooth rational curves such that each of them
meets two others at one point. We also include the degenerate case when two curves
meet at two separate points.) or three smooth rational curves meeting at one point
or two rational curves tangent to each other at one point. Note, that these last two
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cases and when the exceptional locus is a rational curve with a cusp are not log
canonical.

2.2.10 Definition. If the exceptional locus of a minimal resolution of a surface
singularity is a smooth elliptic curve, then it is called a simple elliptic singularity.
If the exceptional locus is a rational curve with a node or a cycle of smooth rational
curves, then it is called a cusp singularity.

2.2.11 Corollary. Let (X, B) be a log canonical surface, f : Y — X a minimal
resolution and r € X a point. Then

(le*OY)g; = Oa

unless x & Supp B and (x,X) is a simple elliptic or cusp singularity.

Proof. Let U;_; E; be the irreducible decomposition of the exceptional locus of f.
By definition there exists a collection a; € Q for 2 =1,2,...,s such that

Ky + [;'B=f*(Kx + B) + Y a;E;,

=1

SO

Oy =Ky + )Y (—a)E;i+ f,'B—- f*(Kx + B).
=1 N

N

Y is a minimal resolution, hence Ky - E; > 0 for all i. Therefore by (2.2.3) either
a; = 0forz =1,...,50r 0 < —a; <1 for all .. If x € SuppB, then N =
f7IB — f*(Kx + B) is not f-numerically trivial and there exists a j such that
N-E; >0. If N-E; = 0 for all ¢, then (2.2.9) and the assumption on the
singularity imply, that there exists a j such that —a; # 1. Therefore (2.2.1.2) is
satisfied in any case, so by (2.2.5)

(R'f,0y), =0. O

§2.3 MINIMAL MODEL PROGRAM FOR LLOG SURFACES

The aim of this section is to establish the Minimal Model Program for log surfaces.
The first step toward this is a contractibility result.

2.3.1 Theorem. Let X be a 2-dimensional regular quasi-projective scheme, C' =
U;_,C; a proper connected curve such that (C; - C;) is a negative definite matriz.
Let {a; | 1 <i < s} be a set of rational numbers such that a; > —1 and

Cj . KX = Cj . ZaiCi, f07“ all _]

=1
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Further assume that C; - Kx > 0 for all j and not all the a;’s are equal to —1.
Then C can be contracted to a log terminal quasi-projective scheme.

2.3.1.1 Remark. If there are —1-curves on X, then by contracting those curves the
discrepancies remain unchanged, so we can apply the theorem in this case, too.

2.3.1.2 Remark. By a result of [Artin62], (2.2.1) implies (2.3.1). In our case, some
steps of Artin’s proof can be simplified and we get a shorter proof.

Proof. By (2.2.3) either a; = 0 for all i or 0 < —a; < 1 for all i. Then by
(2.2.1) HY(Z,0z) = 0 for every Z = >_._, 7;C; with r; € N. In particular every
C; ~ P'. Now choose a very ample line bundle H on X such that H'(X, H) = 0.
Changing H to det(C; - C;)H if necessary, one can find a set of natural numbers
{ri|i=1,2,...,s}such that if Z=3";_, r;C;, then —H -C; = Z - C; for all i (cf.
(2.2.4)). This implies, that

H(Z ’l“iCi) ® O¢, ~ Oc; .-
=1

2.3.2 Lemma. Let X and C be as in (2.3.1), W =3;_, t,C; witht; € N and L
a line bundle such that L ® O¢,; ~ O¢, for all i. Then

L®Ow2(9w.

Proof. Let C; be contained in W (i.e. t; > 0), W; = W — C; and consider the short
exact sequence:

0—>L®Oci(ci—W)—>L®0w—)L®oWi—)0.

By (2.2.2) there exists an 4 such that ¢; > 0 and H*(C;, L ® O¢, (C; — W)) = 0 and
by induction on ) t¢;, L ® Ow, ~ Ow,. Therefore there exists a section of L ® Ow
mapping to a nowhere vanishing section on W;. This defines a nonzero morphism
Ow — L which is an isomorphism since both of these line bundles have degree zero
on every component of Supp W. O

Next consider the short exact sequence:

0— H — H(ZriC’i) — H(ZTZCZ-) ® Oy — 0.
=1 =1

H(}:_, r:C;) is generated by global sections, since H(}.;_, r,C;) ® Oz ~ Oz and
HY(X,H) = 0. Furthermore it is very ample outside Z and trivial on Z, so it
defines a morphism that contracts Z. Let f : X — Y be its Stein factorization, so
Y is normal, f contracts Z and by (2.2.2) Y has rational singularities.

Let D be a Weil divisor on Y and m = det(C;-Cj). Choose {d; |i=1,2,...,s} C
N such that for all ¢

fHmD) - Cy == d;C; - Ci.
j=1
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Let L = Ox(f;'mD + >2j=1d;C;). Then by (2.3.2) L® Oss_ 50 =2 Oxo_ 50,
for every collection of natural numbers {v; | j = 1,2,...,s}. Therefore L is trivial
in every infinitesimal neighborhood of the exceptional divisor of f, so f,L is a line
bundle. Finally this line bundle is isomorphic to Oy (mD) outside the singular
points by construction, hence they are isomorphic. Therefore mD is a Cartier
divisor. [

Next we recall the steps of the Minimal Model Program in this setting.
2.3.3 Minimal Model Program for Log Surfaces.

Let (S, B) be a log surface, f : S — S the minimal resolution. Then by (2.1.1)

NE(S) = NE(S)kospsemrso + > R* [£(C)].

C smooth rational curve on S’

Let C be a (Ks + B + ¢ H)-negative extremal ray on S.
Case 1. C? > 0. Then p(S) =1 by [CKMS8S, 4.4] and —(Ks + B) is ample.

Case II. C? = 0. Let m be an integer such that D = mf*C is Cartier. D - Kg: =
mC - Kg <mC - (Kg+ B+¢eH) <0, so by the Riemann-Roch Theorem

1
h°(nD) > §nD(nD —Kg)+x(0x) >1 for n > 1.

Then | nD | is base point free and it defines a morphism h : S — T to a curve T
This case will be analyzed in more details.

Case III. C? < 0. Then (f7'C)? < 0, so f,1C ~ P.. However it is not clear
whether C' ~ P! and whether it can be contracted projectively or not. We will give
affirmative answers for both questions in the log canonical case.

2.3.4 Lemma. Let h: S — T be the morphism defined in Case II. Then
(2.3.4.1) the general fiber of h is isomorphic to P!,

(2.3.4.2) S is Q-factorial and has rational singularities,
(2.3.4.3) the fibers of h are irreducible.

Proof. Let C; be a fiber of h such that S is smooth along C;. C; = aC for some
a >0, so

2p,(C) —2=C,- (Ks+C;) =Cy - Ks < Cy - (Ks + B) < 0.

Therefore C; ~ P!.

Next let ¥ = ho f : 8" — T. S’ is a (birationally) ruled surface over T, so
R'1.Og = 0. Then by the Leray spectral sequence R f,Os = 0, so S has rational
singularities and the rest of (2.3.4.2) follows by the work of [Artin62].
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Hence every Weil divisor is Q-Cartier. Let I be a fiber and suppose it is re-
ducible, i.e. F' = A; U As. C is extremal, so

C= C¥1A1 = 052A2,

for some 1,9 € Q. Then A; - Ay > 0 and C? = 0 are contradictory, so F' must
be irreducible. O

2.8.4.4 Remark. This lemma provides the missing piece of the proof of (2.1.1),
namely if there exists a (Kx + B + ¢H)-negative extremal ray with nonnegative
self-intersection, then p(Y) < 2.

2.3.5 Lemma. Let (S,B) be a log canonical surface and C C S a curve with
C?2<0andC-(Ks+ B)<0. Then C ~ P! and it can be contracted to a plt point.

Proof. Let f : S’ — S be the minimal resolution of the singularities lying on C
with exceptional divisor Zle C;. We have a; > —1 such that

Kg + f7'B= f*(Kg+ B) + Zaz

Let b > 0 be such that B = bC + B’ and C is not contained in B’. Define

(Ks+B)-C

ag = 2 >0

and let N = Kg+ B —agC. Then N -C =0 and

KS’+f:1BEf*N+aOf*C+ZaiCz

i=1
Let f*C = f7'C + > ¢;Ci, ayy = ap — b and al = a; + apc;. Then
Ksi+ f7'B = f*N +ayf71C + Za;Ci a;, > —1.

=1

Let Cy = f.1C and choose {r; | i=0,1,...,s} C Q" such that for all ¢
f1B-C erc - Ci.
Now let a] = a + r; and then

S
Kg = f*N-i—Za;'C’i a; > —1.
i=0
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By (2.3.1) there exists a g : S’ — T that contracts U{_,C;. By construction this g
factors through S, so there exists an h : S — T that contracts C and (T, h.B) is
log terminal along h,B. By (2.2.11)

(R'9.0s1), = 0,
so T has rational singularities and by the Leray spectral sequence
(R*h,0s), = 0.
Then H'(C, O¢) = 0, hence C ~ P!. Finally Q-factoriality follows from (2.3.1). O

The following theorem summarizes the results in this section.

2.3.6 Theorem (log MMP for log surfaces). Let (S,B) be a log canonical
surface. There exists a sequence of contractions f: S — S;1 — ... = S, =S5’ such
that S’ is log canonical (even plt at every point where f~1 is not an isomorphism)
and satisfies exactly one of the following conditions:

(2.3.6.1) Kg/ + f.B is nef.

(2.3.6.2) There exists a g : S — T morphism, such that S’ is a birationaly ruled
surface over the curve T'.

(2.3.6.3) (S', f«B) is a log Del Pezzo surface.

Proof. Repeatedly using (2.3.5) we find a sequence of contractions f : S — S’ such
that there is no curve C' C S’ such that C? < 0 and C - (Kg' + f«B) < 0. Hence
either Kg: + f,B is nef or we have Case I or Case II of (2.3.3). These in turn
correspond to (2.3.6.3) and (2.3.6.2) respectively. O

§2.4 LoG CANONICAL SURFACE SINGULARITIES

The aim of this section is to get a rough classification of the log canonical surface
singularities.

2.4.1 Notation. Let X be a surface and B a Q-divisor on X. f:Y — X aresolution
of singularities of X and FE;, ¢ € I the set of f-exceptional prime divisors. We define
the resolution graph I'f of f in the following way: Let E;, ¢ € I be the set of vertices
of T'y, with n; = —E?, p; = pa(E;), Bi = E; - f7'B and let (E;, E;), i # j be an
edge of weight w; ; = E; - E; if E; and E; meet.

If f:Y — X is a minimal resolution, then n; > 2 for each 7 such that p; = 0.
Motivated by this example we make the following abstract definition.

2.4.2 Definition. A resolution graph is a graph I' = (E;, ng, pi, Bi, w; j,%,j € 1)
where I C N is a finite set, E; are the vertices of the graph with weight n;, p-
weight p; and B-weight (8;, and with edges of weight w; ;. We define w; ; = —n; and
w;; = 0if (E;, Ej) is not an edge of I'. In addition we assume that the matrix
(w; ;) is negative definite, n; > 0, p; > 0, 5; > 0, for all 4 and w; ; > 0 for all ¢ # j.
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For a resolution graph I' we define d; = 2p; — 2 + n; + ;. Also, we define a; —
the discrepancies of I' — as the solutions of the system of linear equations:

(2.4.2.1) Zaiwi,j = dj, jel.
i€l

O(T") = det(w; ;) # 0 since (w; ;) is negative definite, hence a; exist. Furthermore,
they are rational numbers such that their denominator divides §(T').

T is called a minimal resolution graph if d; > 0 for all 4. (This is slightly more
general than being the graph of a minimal resolution.)

If I' is a minimal resolution graph, then by (2.2.3) a; < 0 for all 4, with strict
inequalities unless d; =0 (i.e. n; =2, p; = f; =0 or n; = B; =1, p; = 0 for all 7).
Such a I' is called a Du Val graph. In this case a; = 0 for all .

T is called log canonical (resp. log terminal) if a; > —1 (resp. a; > —1) for all 3.

IV is a resolution subgraph of I' if it is a subgraph which is a resolution graph
I = (El,n.,pl, §,w§7j,i,j € I' C I) such that n} < n,;, p; < p;, . < g; for all ¢
and w; ; < w;; for all i # j. Note that (w; ;) is negative definite by assumption.

If I is a minimal resolution graph, then by a subgraph we will mean a resolution
subgraph that itself is a minimal resolution graph, i.e. d} > 0.

For a subgraph we define n; = p; = 8, = w; ; = wj; = 0 for

alli € I\ I' and j € I. A subgraph is called proper if there exists an i € I
such that p, < p; or B < B; or a; # —1 and n} < n; or there exists a j # ¢ such
that wé,j < wj j. In other words we call a subgraph proper either if it is a proper
subgraph as a graph or one of the weights is strictly smaller than the corresponding
weight of the ambient graph except that a subgraph is not considered proper if only
the weights of those vertices decrease which have discrepancy —1.

The following lemma will be our main tool in order to classify the log canonical
minimal resolution graphs.

2.4.3 Lemma. Let I' = (E;,n;, p;, Bi, Wi j,1, 5 € I) be a minimal resolution graph.

(2.4.3.1) Let o; be such that Zaiwi’j <d; for all j.
i€l
Then a; < a; with strict inequalities unless a; = «; for all 1.
(2.4.3.2) Let T' be a proper subgraph of T' and assume that one of the following
holds:
(2.4.3.2.1) n}, =n; forallie I,
(2.4.3.2.2) a; > —1 for alli €I,
(2.4.3.2.3) a, > =1 for alli € I',
Then a; < a; for all i € I' with strict inequalities unless I' is a Du Val
graph

Proof. (2.4.3.1) implies that » . (a; — a;)w; ; > 0, so a; < a; by (2.2.3).

In cases (2.4.3.2.1) and (2.4.3.2.2) let W, ; = w; ; and in case (2.4.3.2.3) W, ; =
w; ;. Also let N; = —W; ;. Then w; ; < W;; < w;; and n; < N; < n;. In general
we have
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Z (Cl,i - a;)Wi,j = Z aiWi,j - aij - Z G,;Wi,j + CL;N]‘

i,jel’ CVISYARE ] 1,J€l’ ity
[ !
> E a;w; ; — a;Nj — E a;w; ; + a;Nj
uL,jel’ i) i,jel’ i]

= dj — dj + a;(n; — Nj) — aj(nj — Nj)

= 2(p; — Pj) + 1y —nj + B — B + aj(n; — Nj) — az(nj — Ny)
> (1+aj)(nj — Nj) + (14 a})(N; — nj).

Here (1 + aj)(n; — Nj) + (1 + a})(N; — n3) > 0 by the choice of Nj, therefore
>ijer (@i —aj)W;; >0, and then a; —a; < 0 for all 4 by (2.2.3). Here we get strict

inequalities unless I' is a Du Val graph assuming that I' is a proper subgraph. [0

2.4.4 Corollary. A proper subgraph of a non Du Val, log canonical minimal res-
olution graph is log terminal. O

2.4.5 Corollary. Let I be a subgraph of a log canonical minimal resolution graph
I' and assume that one of the discrepancies of IV is —1. Then I' =T1". O

We want to classify the log canonical minimal resolution graphs. First we con-
sider special subgraphs which are log canonical but not log terminal, hence no log
canonical minimal resolution graph can contain them as a proper subgraph. Also,
in these examples we assume, that B = 0. Once we have the classification of those,
using (2.4.3), it is easy to find the graphs which have B # 0 (cf. [Kolldr et al.92,

§3]).

2.4.6. Let I be a subgraph of a log canonical minimal resolution graph I'. Consider
the following cases.

2.4.6.1. T = (E',n/,p’ > 1). Then d' > n/, son’ > —a'n’ = d > n’. Therefore
a=-1,p=1and ' =T".

2.4.6.2. T' is a circle of r-vertices such that p; = 0 and w; ;41 = 1 (including
wy1 = 1) for all edge. Then easy computation shows that a; = —1 and hence
r=r".

2.4.6.3. ' = (F1, Ea,n1,n2,w =2). Then a; = az = —1, and again ' =I". Note
that if the weight of an edge is larger than one, then at least one of the end vertices
must have weight larger than two, for it would violate the negative definiteness of
the matrix (w; ;).

2.4.6.4. T' is a chain with two forks (vertices with more than two neighbors) at
the ends: Let the vertices be F1, E3, E3, ..., E,,, E], E5, such that Es, ..., E,, is
a chain and the remaining edges are (E;, E3) and (E., E,) for i = 1,2. Let all
the edges be of weight 1 and define a; = —1 for 3 < i < r and a; = o, = —1/2
for s = 1,2. Then by (2.4.3.1) a; = «; for all 4 and T' = I". Also follows that
n; =n, =2fori=1,2.
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2.4.6.5. T" is a fork Ey with neighbors E1, ..., Ex, k > 4. Let all the edges be of
weight 1 and define a9 = —1 and o; = —1/2 for i = 1,..., k. Then by (2.4.3.1)
a; < «; for all 4. It can be log canonical only if £ = 4, a; = a4, n; = n, = 2 for
1=1,...,4and T =T".

2.4.7. Now let I' be non Du Val such that it does not have any subgraphs of the
types considered in (2.4.6). Then by (2.4.3) p; = 0 for all ¢ and I' is a tree with
edges of weight 1 and it is a chain or has one fork with three neighbors. Here we
do not need the precise classification. (It was first done by [Kawamata88] following
a different way. Arithmetical proofs were given by [Sakai87] for the case B = (), by
S. Nakamura in an appendix to [Kobayashi90] and by V. Alexeev in [Kollar et al.92,
§3].) In the latter case leaving out the fork, three chains are left corresponding to
quotient singularities of type C2 / Zn,;(1,q;) for i = 1,2,3. Then I is log canonical
1 1 1 1 1

. o L
(resp. log terminal) if — 4+ — + — >1 (resp. — + — 4+ — > 1).
ni na ns n1 N9 n3

A lot can be said about the discrepancies occurring on the minimal resolution of
lc singularities. (cf. [Shokurov88,93], [Alexeev89], [Kolldr et al.92, §18]). Here we
prove some simpler results that are needed later.

2.4.8 Proposition. IfT' is a non Du Val graph, then there exists an i such that
a; < —1/3.

Proof. Let E be a vertex of weight n > 2. Then —na > d > n— 2, so a <
—1+2/n<-1/3. O
A quantitative version of the above result is:

2.4.9 Proposition. Let T be a non Du Val minimal log canonical resolution graph.
Then
1 T

- 2
Proof. The statement is clear if T is one of the types considered in (2.4.6), so we
may assume that I' is a chain or has one fork with three neighbors. By (2.4.3.2) it
is sufficient to consider a subgraph I'' of " in order to give an upper bound for a;.
I' is non Du Val, so there exists an r € I such that n, > 2. Let IV be a
chain F, Fs, ..., E, and let the weights ny,...,n,_; drop to 2 and n, to 3. Then
a; =1a} and

—3a,. +a,_;=—(2r+1)aj = 1.
Let ¢ > (r + 1)/2, then we have

agg—l rel 1
2 2r+1 4

Next assume that E, has two neighbors and let the other one be E, ;1 and "' =
I U{E, 1} be the chain with one more vertex £, of weight 2. Then a!! = 2a;’,,
and
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3
—3a, +a;_,+a. ,=— (57'—1—1) al =1.

This time let ¢ > /2. Then

/ - < _Z

T 3r+2 4

It follows that if a vertex E, of I' has weight larger than two and has more than
one neighbors, then for any chain I'* of vertices Ef, ..., E;_;, E, we have

o

Therefore the statement is proved if I' is a chain or the fork of I' has weight
larger than two.

Again by (2.4.3.2) the only case we have left is a tree, I' with one fork Ey with
neighbors E1, Ef, EY and branches Ey,... ,Eq; Ef,... ,E/;; EY ... E, such that
all the weights are 2 except n, = 3.

First consider ' = 7" = 2 and let a = af = af. Then a} = af = 2a, ap = 3a
and then a; = 2a.

Suppose that » > 2. Then as = a and r = 2 since otherwise az would have to
be zero. Also, 1 = —3ay + a1 = —a shows that this case is not log canonical. Thus
we have r = 1 and then a = —1/3, a1 = a} = af = —2/3 and ap = —1.

Therefore we may assume that 7’ = 1 by (2.4.3.2). Now consider "/ = 1. Then
a; =2afori=0,1,...,r where a = a} = af. Also, 1 = —3a, +a,_1 = —4a implies
that a = —1/4.

Finally, if 7/ > 1 we still have o} < —1/4 and the rest is a chain for which we
already know the result. O

T 1
a// <

N 1 s

2.4.9.1 Remark. Essentially the same proof gives, that if ¢ > 0, then

o

On the other hand one cannot find a similar estimate for —1/2 instead of —1/2+¢.

1
a; < ) -I—s} >2e|T|—1.

In view of the fact that the denominator of the discrepancies divides det(C; - C;),
having an estimate for this determinant gives one for the index, that is the common
denominator of the discrepancies.

2.4.10 Lemma. Let I’ be a log canonical minimal resolution graph. Then

| detid'e[ ’ll)i’j| S H n;.
iel

Proof. Let E; be a vertex of I' with only one neighbor Ey. Let 6(I') = det; jer wi,j,
01 = deti’jej\{l} w; ; and 0y = deti,jej\{]_72} w; ;. Then 0(T) = —n1d1 — ds.
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Since (w; ;) is negative definite, the signs of §; and dy are different, so

0(0)| < max{[n101], |32}

Now we are done by induction. If T" is a circle, a similar argument works. [

§2.5 SINGULARITIES IN THE MINIMAL MODEL PROGRAM

2.5.1 Principle. Run the Minimal Model Program for a log surface (X, B), where
X is smooth. If B =0 we get only smooth points. For arbitrary B we may get log
terminal points, too. The smaller B, the simpler the singularities of the minimal
model of (X, B).

The first illustration of the principle is the following:

2.5.2 Proposition. Let (X, B = > b;B;) be a smooth log surface such that b; <
1/3 for alli. Then the log minimal model of (X, B) has only Du Val singularities.

2.5.3 Lemma. LetY be a smooth surface, C = U;_,C; a proper connected curve

and f:Y — X a birational morphism onto a normal surface with exceptional locus
C. Define a; by

Cj . Ky = Cj : ZaiCi, fOT all j

=1

(2.5.3.1) Let a; > 0 for all i. Then X is smooth.
(2.5.3.2) Let a; > 0 for all i. Then X has Du Val singularities.

(2.5.3.3) Let a; > —1/3 for alli. Then X has Du Val singularities.

Proof. In case (2.5.3.1) by (2.2.3) there exists a j such that C; - Kx < 0, i.e. C;
is a —1-curve, so it can be contracted to a smooth point. Iterating this process we
find that X is smooth.

In case (2.5.3.2) after contracting all the —1-curves, we have a; = 0 for the
remaining discrepancies by (2.2.3) and then X has Du Val singularities.

In case (2.5.3.3) by (2.4.8) in fact a; > 0, so X has Du Val singularities. O

2.5.4 Lemma. Let (X, B) be a smooth log surface, f : X — X' the morphism
onto the log minimal model of X and C' = U;_,C; the set of curves contracted by
f. Let a; be such that

Kx+B=f"(Kx + fB)+ Y _aiC:.
=1

Then a; >0 fori=1,...,s.

Proof. Let f; : X; — X;+1 be the step when Cj is contracted and g; : X = X; — X
be the composition of fi,..., fi_1. Denote by B; the birational transform of B on
X, and let a; be such that
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KXi + B; = fi*(KXi+1+Bi+1) + a;C;.
C; - (Kx, + B;) < 0 shows that o; > 0. Next let v;, 7 =1,...,7— 1 be such that

i—1

Kx+B=g;(Kx,+n,)+ »_7Cj.
j=1

Assume, by induction, that «; > 0. Then

1—1

Kx +B= g;+1(KXi+1+Bi+1) + aig;ci + Z’YjCj,
Jj=1

so the v’s defined for ¢ + 1 will be positive again and the statement follows. [
2.5.5 Lemma. Let (X, B =) b;B;) be a smooth log surface and C = U3_,C; the

set of curves contracted by the log Minimal Model Program and a; defined as in
(2.5.3). Then a; > —b;.

Proof. Let f: X — X' be the morphism onto the log minimal model of X. Let a
be such that

S
Kx +B=f*(Kx + fB)+ Y _ ajC:.
=1

Now a} > 0 by (2.5.4). Let b; > 0 be such that B = >>7_, b;C; + B" and C; are not
contained in B’. Choose {r; |i=1,...,s} C Q" such that

C;-B'=C;- Z(—Ti)ci; for all j.
=1

Then

Cj -Kx ZCj Z(a;—bz-i—n)()‘z
=1

so a; = a; — b; + r; and the statement follows. [

Proof of 2.5.2. Follows from (2.5.5) and
(2.5.3.3). O

The second example illustrating (2.5.1) becomes important later:

2.5.6 Proposition. Let (X, B’ + B") be a smooth log surface such that B' =
S 0B with b, < 1/4 and B” = Y"._, b/ BY. Let X' be the log minimal model

=1"1 =1 "1

of X and g : X" — X' the minimal resolution of X'. Then the number of curves
contracted by g is at most 2r" .

Proof. Let C C X" be a g-extremal curve. If (the birational transform of) C' is not
contained in B”, then C has discrepancy at least —1/4. By (2.4.9) the number of
such curves is at most 7. [0
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2.5.7 Corollary. With the same assumptions as in (2.5.6) assume further that
there exists ane > 0 such that b < 1—¢ for alli. Then the non Du Val singularities
of the log minimal model of (X, B) are from a finite list. In particular, the index

of the log minimal model of X divides |_(2/€)r_’|’!.

Proof. Let the number of vertices of the resolution graph be k. k is at most 27"
and by (2.4.8) and (2.5.5)

2
“l-ggzai> bz -1+,

so C2 > —2/e.
Also, by (2.4.10) |det(C; - C;)| < [I(=C2?) < (2/¢)"". This bounds the index by
(2.4.2.1). O
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