??. AMPLE LINE BUNDLES ON MODULI SPACES

SANDOR J. KovAcs AND JAMES MCKERNAN

This chapter is devoted to prove the projectivity of the moduli space of surfaces
of general type. Indeed we prove a more general result as follows. (For the definition
of semi-positivity see §1.) Most of the ideas appearing in this chapter are already
present in [Kollir90] where the matter is discussed in more generality. Here we
include a somewhat simplified proof restricting to the necessary cases.

?7?7.0.1 Theorem. Let f: X — Y be a flat morphism of proper schemes and L
a Q-line bundle on X, such that L is f-ample and f.(L*) is a semi-positive vector
bundle for all k large and sufficiently divisible. Suppose every fibre is isomorphic
to only finitely many others, and for a fibre X, there are only finitely many auto-
morphisms of X, fixing Lk\Xy.

Then det f.(L™) is ample, for m large and sufficiently divisible. In particular' Y
1S projective.

22.0.0.1 Remark. The same statement is true for algebraic spaces with essentially
the same proof.

§77.1. SEMI-POSITIVE VECTOR BUNDLES

?2.1.1 Definition. Let V be a vector bundle over a scheme Y. We say that V is
semi-positive, if for every morphism g : C — Y from a smooth projective curve C
and every quotient bundle @ of ¢*V, ¢1(Q) > 0.

?7?7.1.2 Lemma. Let V be a vector bundle over a scheme Y. The following are
equivalent.

(1) V is semi-positive.

(2) For every morphism g : C — Y from a smooth projective curve C' and
every quotient line bundle L of g*V', ¢1(L) > 0.

(3) Opvy(1) is nef on P(V).

(4) For every morphism g: C — Y, ¢g*V ® H is ample, where H is ample on
C.
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Proof. Clearly (1) implies (2). Let w : P(V) — Y be the natural projection. Let
C C P(V) be a curve. Then Op(v)(1)|c is a quotient of 7*V'|g. Thus (2) implies
(3)-

Let g : C — Y be any morphism. Then we have a commutative diagram:

P(g*V) —Z— P(V)

7| &

¢ — Y
g

such that Op(g=y)(1) = g*Op(v)(1). Now if Op()(1) is nef, then so is Op(g-y)(1)
and then for any ample line bundle H on C, Op(4-y(1) ® 7* H is ample. This is
exactly the ampleness of g*V ® H (cf. [Hartshorne66, 3.2]). Hence (3) implies (4).

A quotient bundle of an ample vector bundle is ample and has positive degree
[Hartshorne66, 2.2 and 2.6]. Now choose H ample of degree one and conclude that
any line bundle quotient L of ¢*V has degree at least 1 — degH = 0. Thus (4)
implies (2).

Let g : C — Y be a morphism, and @ a quotient bundle of g*V. Let W = P(Q)
be the subscheme of P(g*V') corresponding to Q. Then ¢1(Q) = c1(g*Op(v)(1))*|w,
where k is the dimension of W. Thus (3) implies (1). O

??7.1.2 Lemma. Let V be a semi-positive vector bundle. Then W = Sym®(V) is
semi-positive.

Proof. There are several ways to prove this result. We present a very general one
given in [Kollar90].

First assume the characteristic of the groundfield is not zero. By definition of
semi-positivity, we may assume Y is a curve. Note that H!(Y,V ® L) vanishes, for
c1(L) > 2g — 1, since every map from V ® L to wy must be zero. Thus V ® L is
globally generated, for c¢;(L) > 2¢g + 1 and we have a surjective map:

T
L'V
=1

It follows that W is a quotient of the direct sum of line bundles whose degree is
bounded from below by the constant N = —d(2g + 1). Note that N depends only
on d and on the genus of the curve, but not on V.

Suppose @ is a quotient vector bundle of W, of negative degree. Applying base
change by powers of the Frobenius, we obtain V/, W’ and @’, such that ¢1(Q') < N,
a contradiction.

To finish the proof in characteristic zero we use the reduction mod p technique
(cf. [Kollar94, I1.5.10]).

Suppose W is not semi-positive, i.e., it has a quotient bundle of negative degree.
This remains true after reducing mod p for an open dense set of primes. After base
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change we may assume, that W reduced mod p has a quotient bundle of degree less
than —d for an open dense set of primes.

Now choose an ample line bundle of degree 1. V' ® H is ample, ampleness is an
open condition in flat families, so V ® H is ample mod p for an open dense set of
primes. Then by the above argument Symd(V ® H) ~ W @ H®? is semi-positive,
so every quotient bundle of W has degree at least —d, a contradiction. [

§77.2. AMPLENESS THEOREM

We now turn to the proof of (77.0.0). We review the general idea of the proof.
First choose the integers k and d satisfying the following properties:
(1) L"’ is f-very ample
(2) Rif (L’*)=0fori,j >0
(3) the multiplication map p : Sym?(f, (L*)) — f.(L4*) is surjective
(4) every fibre X,, embedded into the projective space P, via LF| x, is defined
(set theoretically) by degree d equations.

Set V = f,(L%), and W = Sym*(V)). Then Q = f,(L™) is a quotient of W for
m = dk. Now @ is semi-positive and so is det @ by (77.1.1). We claim that det @
is ample. It remains to use the fact that f moves in moduli as much as possible.

Suppose V has rank r and let G = GL(r). Clearly W has structure group G.

22.2.1 Definition. Let W be a vector bundle of rank n with structure group G' and
p: W — @ a quotient bundle of rank [. Let Gr(l,n)/G. denote the set of G-orbits
on the /-dimensional quotients of an n-dimensional vector space. The classifying
map is the natural map of sets u : Y — Gr(l,n)/G.

We will say that wu is finite, if

(1) the fibres of u are all finite, and

(2) the fibres of p have finite G-stabilisers.

Note that in our case the classifying map is automatically finite. Indeed, if y is a
point of Y, the embedding of X, into P, identifies H%(X,, L¥x,) ~ H° Py, Op (1))
in a natural way. Then p at the point y is the same as the restriction map, i.e., we
have the following commutative diagram:

Sym?(H°(X,, L*|x,)) —— H(X,, L**|x,)

K -

H(P,,0p (d)  —— H°(Xy,0p (d)|x,)

Therefore the kernel of p consists of the degree d polynomials cutting out X,
under the embedding given by L¥. Let yi,y2 € Y be such that u(y;) = u(yz).
Then there is an element of G that maps the kernel of p at y; isomorphically to the
kernel of p at y». Hence it induces an isomorphism between X, and X,,. Since
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every fibre is isomorphic to only finitely many others this implies that u has finite
fibres.

Similarly, the fibres of p have finite G-stabilisers since for every X, there are
only finitely many automorphisms of X, fixing LF| X,

Thus we are reduced to proving the following result.

?7?7.2.2 Theorem. LetV be a semi-positive vector bundle over the scheme Y, and
suppose Q is a quotient of W = Sym? V', such that the classifying map is finite.
Then det QQ is ample.

To prove (77.2.1) we are going to apply the Nakai-Moishezon criteria (cf. [Nakai
63], [Moishezon67] and [Kleiman66)):

??.2.2 Theorem (Nakai-Moishezon). Let H be a line bundle on the proper
scheme Y. Suppose that (c1(H|z))%™Z > 0, for every closed irreducible subvariety
Z of Y.

Then H 1is ample.

Pick a subvariety Z of Y. By Chow’s Lemma, if we normalise Z, and blow it
up, then we may make Z projective, but we lose the fact that the classifying map
is finite. Thus we are reduced to proving:

?7?7.2.2 Lemma. LetV be a semi-positive vector bundle over the projective variety
Y, and suppose Q is a quotient of W = Sym?V, such that the classifying map is
finite over an open subset of Y.

Then c1(Q)H™Y > 0.

Proof. We introduce a projective bundle P over Y, so that we may lift the classifying
map to a rational map g : P — Gr(l,n). Set

and let m be the natural projection to P — Y. Consider the natural map of
(3(1M).7.7)
t: @ Op(—1) — V.
=1

It is generically surjective and by composition if induces a generically surjective
map

0 : Sym®( & Op(-1)) — 7@
i=1

Replacing P by a blow up b : P’ — P, we may assume that b*6 surjects onto a
locally free subsheaf B of b*7*Q).
Now we consider the following twist of b*6

0 © Op = b*(Sym™( & Op(~1)) ® Op(d)) — b*(x*Q @ Op(d).

=1
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The classifying map of this quotient is a morphism
g: P — Gr(l,n).

which is a lifting of the classifying map u : Y — Gr(l,n)/G.

For simplicity we assume that G is transitive on the fibres of P over Y. This is
the case we need for our application. For the general case see [Kolldr90, 3.13]. Now
g is generically finite, since the classifying map wu is finite over an open subset of
Y, and P has structure group G. Let (’)Gr(l’n)(l) be the very ample line bundle on
Gr(l,n) giving the Pliicker embedding. Then det(B) ® b*Op(dl) = g*Og:,n) (1) is
big.

Pick an ample divisor H on Y. For e large enough, g*Og.(,n)(e) ® b*7*Op(—H)
will have a section. Thus there is a non-trivial map

Opr —> g*OGr(l,n) (e) ® b*ﬂ'*Oy(—H) ~ det(B)®e ® b*(Op(edl) ® F*Oy(—H))

Composing with the natural map det(B) — det(Q), pushing forward to P and
then to Y yields

Opr — b*(det(Q)®e ® O]p(edl) 29 W*Oy(—H))
Op — 7 det(Q)®° ® Op(edl) ® 7* Oy (—H)
Oy — det(Q)%° ® 1* Oy (—H) @ 7, (Op(edl)).

Finally we have a nontrivial map

6 : (mu(Op(ed))))* = Sym™ (& V) — det(Q)® @ 7* Oy (_p)

Replacing Y by a blow up, we may assume the image of ¢ is a locally free

subsheaf G. ¢;(G) is nef since Sym®®( & V') is semi-positive. Thus we have
=1

e-c1(Q)=E+c1(G9) + H,

where E is an effective divisor, ¢1(G) is nef, H is ample and ¢;(Q) is nef. Then
dim Y

edimY . Cl(Q)dimY — HdimY + Z H(dimY—i) . Cl(Q)(i—l) . (E+c1(g)) >0. O

=1

This completes the proof of (77.2.1) and (?77.0.0).
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