Algebra = Geometry

Sándor Kovács University of Washington

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Motto

"To me, algebraic geometry is algebra with a kick"

-Solomon Lefschetz

• Geometry = Space + Functions

- Geometry = Space + Functions
 - Type of function \longrightarrow Type of Geometry

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Geometry = Space + Functions
 - Type of function \longrightarrow Type of Geometry
 - continuous

- Geometry = Space + Functions
 - Type of function
 →
 Type of Geometry

 continuous
 →
 Topology

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Geometry = Space + Functions
 - Type of function
 →
 Type of Geometry

 continuous
 →
 Topology

 differentiable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

differentiable

- Geometry = Space + Functions
 - Type of function
 →
 Type of Geometry

 continuous
 →
 Topology

 differentiable
 →
 Differential Geometry

- Geometry = Space + Functions
 - Type of function \rightsquigarrow Type of Geometry• continuous \rightsquigarrow Topology• differentiable \rightsquigarrow Differential Geometry• holomorphic \sim Differential Geometry

• Geometry = Space + Functions

Type of function	$\sim \rightarrow$	Type of Geometry
 continuous differentiable holomorphic	$\overset{\sim}{\overset{\sim}{}}$	Topology Differential Geometry Complex Geometry

• Geometry = Space + Functions

Type of function	\rightsquigarrow	Type of Geometry
 continuous differentiable	$\overset{\sim}{\leadsto}$	Topology Differential Geometry
 holomorphic 	\rightsquigarrow	Complex Geometry
 algebraic 	\rightsquigarrow	

• Geometry = Space + Functions

Type of function	\rightsquigarrow	Type of Geometry
• continuous	\rightsquigarrow	Topology
 differentiable 	$\sim \rightarrow$	Differential Geometry
 holomorphic 	$\sim \rightarrow$	Complex Geometry
 algebraic 	$\sim \rightarrow$	
(polynomials,		
rational functions)		

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Geometry = Space + Functions

Type of function	\rightsquigarrow	Type of Geometry
• continuous	$\sim \rightarrow$	Topology
 differentiable 	$\sim \rightarrow$	Differential Geometry
 holomorphic 	$\sim \rightarrow$	Complex Geometry
 algebraic 	$\sim \rightarrow$	Algebraic Geometry
(polynomials,		
rational functions)		

Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to *X*.

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to *X*.

• A(X) is called the coordinate ring of X.

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to X.
 - A(X) is called the coordinate ring of X.
 I.e., for f, g polynomials, f ~ g iff f|_x = g|_x.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to *X*.
 - A(X) is called the coordinate ring of X.
 I.e., for f, g polynomials, f ~ g iff f|_X = g|_X.
 - A(X) is a finitely generated \mathbb{C} -algebra: $A(X) = \mathbb{C}[a_1, \ldots, a_n]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to *X*.
 - A(X) is called the coordinate ring of X. I.e., for f, g polynomials, $f \sim g$ iff $f|_X = g|_X$.
 - A(X) is a finitely generated \mathbb{C} -algebra: $A(X) = \mathbb{C}[a_1, \ldots, a_n]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• A(X) is independent of the embedding $X \subseteq \mathbb{C}^n$.

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to *X*.
 - A(X) is called the coordinate ring of X. I.e., for f, g polynomials, $f \sim g$ iff $f|_X = g|_X$.
 - A(X) is a finitely generated \mathbb{C} -algebra: $A(X) = \mathbb{C}[a_1, \ldots, a_n]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A(X) is independent of the embedding X ⊆ Cⁿ.
 It only depends on X.

- Let X ⊆ Cⁿ be an (affine) algebraic variety,
 i.e., the common zero set of some polynomials.
- A(X) = polynomials in *n* variables, restricted to X.
 - A(X) is called the coordinate ring of X.
 I.e., for f, g polynomials, f ~ g iff f|_X = g|_X.
 - A(X) is a finitely generated \mathbb{C} -algebra: $A(X) = \mathbb{C}[a_1, \ldots, a_n]$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- A(X) is independent of the embedding X ⊆ Cⁿ.
 It only depends on X.
- $X \simeq Y$ iff $A(X) \simeq A(Y)$.

geometric object: X

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

geometric object: X

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

geometric object: X \rightsquigarrow algebraic object: A(X)

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

geometric object: X $\sim \rightarrow$ algebraic object: A(X), such that $X \simeq Y$ iff $A(X) \simeq A(Y)$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

• Let $X = \mathbb{C}$ be the affine line.

• Let $X = \mathbb{C}$ be the affine line:

• Let $X = \mathbb{C}$ be the affine line:

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Then $A(X) \simeq \mathbb{C}[t]$.

• Let $X = \{(x, y) \mid y^2 = x)\} \subset \mathbb{C}^2$.

• Let $X = \{(x, y) \mid y^2 = x)\} \subset \mathbb{C}^2$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• Let $X = \{(x, y) \mid y^2 = x)\} \subset \mathbb{C}^2$:

A D > A D > A D > A D >

3

Sac

• Then $A(X) \simeq \mathbb{C}[x, y]/(y^2 - x) \simeq \mathbb{C}[t]$.

• Let $X = \{(x, y) \mid y^2 = x)\} \subset \mathbb{C}^2$:

A D > A D > A D > A D >

3

Sac

• Then $A(X) \simeq \mathbb{C}[x, y]/(y^2 - x) \simeq \mathbb{C}[t]$.

Example: Cusp

• Let $X = \{(x, y) \mid y^2 = x^3\} \subset \mathbb{C}^2$.

Example: Cusp

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Example: Cusp

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Then $A(X) \simeq \mathbb{C}[x, y]/(y^2 - x^3) \simeq \mathbb{C}[t^2, t^3] \not\simeq \mathbb{C}[t].$

Example: Node

• Let $X = \{(x, y) \mid y^2 = x^2(x+1)\} \subset \mathbb{C}^2$.

Example: Node

• Let $X = \{(x, y) \mid y^2 = x^2(x+1)\} \subset \mathbb{C}^2$:

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Example: Node

• Let $X = \{(x, y) \mid y^2 = x^2(x+1)\} \subset \mathbb{C}^2$:

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

• Then $A(X) \simeq \mathbb{C}[x, y]/(y^2 - x^2(x+1)) \not\simeq \mathbb{C}[t]$.

$\mathsf{Geometry} \leftarrow \mathsf{Algebra}$

▲□▶▲圖▶★圖▶★圖▶ ■ のくで

Geometry \leftarrow Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Geometry \leftarrow Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

 $\sim \rightarrow$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Geometry ← Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

 $\exists X \subseteq \mathbb{C}^n$ algebraic variety, such that $A(X) \simeq A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry \leftrightarrow Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

 $\exists X \subseteq \mathbb{C}^n \text{ algebraic variety, such that } A(X) \simeq A.$ $A = \mathbb{C}[a_1, \dots, a_n] \simeq \mathbb{C}[x_1, \dots, x_n]/I$

Geometry \leftrightarrow Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

 $\exists X \subseteq \mathbb{C}^n$ algebraic variety, such that $A(X) \simeq A$.

$$A = \mathbb{C}[a_1, \ldots, a_n] \simeq \mathbb{C}[x_1, \ldots, x_n]/I$$

Since $\mathbb{C}[x_1, \ldots, x_n]$ is noetherian, I is finitely generated: $I = (f_1, \ldots, f_r)$ and so $X = Z(f_1, \ldots, f_r)$ works.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometry \leftrightarrow Algebra

Let $A = \mathbb{C}[a_1, \ldots, a_n]$ be a finitely generated \mathbb{C} -algebra.

 $\exists X \subseteq \mathbb{C}^n$ algebraic variety, such that $A(X) \simeq A$.

$$A = \mathbb{C}[a_1, \ldots, a_n] \simeq \mathbb{C}[x_1, \ldots, x_n]/I$$

Since $\mathbb{C}[x_1, \ldots, x_n]$ is noetherian, I is finitely generated: $I = (f_1, \ldots, f_r)$ and so $X = Z(f_1, \ldots, f_r)$ works.

{affine varieties} \leftrightarrow {finitely generated \mathbb{C} -algebras}.

Curves

Complex Projective Curve = Riemann Surface

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Line

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の < ⊙

Example: Line

Let
$$X = \{(x, y) \mid y^2 = x)\} \subset \mathbb{C}^2$$
.

A B +
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: Cusp

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Example: Cusp

Let
$$X = \{(x, y) \mid y^2 = x^3\} \subset \mathbb{C}^2$$
.

ヘロト ヘロト ヘビト

<20 € ► 12

Example: Node

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Example: Node

Let $X = \{(x, y) \mid y^2 = x^2(x+1)\} \subset \mathbb{C}^2$.

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ つ へ ()・

A curve C is rational if it can be parametrized,

A curve *C* is *rational* if it can be parametrized, i.e., if there exists a surjective morphism $\mathbb{P}^1 \rightarrow C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

genus 0

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

E

genus 0

genus 1

• • • • • • • •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 $\exists \rightarrow$

Þ

genus 0

genus 1

genus 2

A B > 4
 B > 4
 B

÷

genus 0

genus 1

genus 2,...

・ロト・(四ト・(田下・(日下・))

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ うへぐ

ヘロト 人間ト 人間ト

< ∃ →

• Zariski topology: the crudest topology in which algebraic functions are still continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Zariski topology: the crudest topology in which algebraic functions are still continuous.

• Zariski topology of a curve:

• Zariski topology: the crudest topology in which algebraic functions are still continuous.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Zariski topology of a curve: $\emptyset \neq U \subseteq X$ is open iff $|X \setminus U| < \infty$.

• Zariski topology: the crudest topology in which algebraic functions are still continuous.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- Zariski topology of a curve: $\emptyset \neq U \subseteq X$ is open iff $|X \setminus U| < \infty$.
- In particular, any two curves are homeomorphic.

Local Rings

• Let X be a curve (a.k.a. a Riemann Surface).

Local Rings

Let X be a curve (a.k.a. a Riemann Surface).
K(X):= {f/g | f,g polynomials, g ≠ 0} the function field of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
 K(X):= {f/g | f,g polynomials, g ≠ 0} the function field of X.
- $P \in X \rightsquigarrow \mathscr{O}_{X,P}$ the local ring of P on X.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Local Rings

Let X be a curve (a.k.a. a Riemann Surface).
K(X):= {f/g | f,g polynomials, g ≠ 0} the function field of X.
P ∈ X → Ø_{X P} - the local ring of P on X.

•
$$\mathcal{O}_{X,P} := \left\{ \frac{f}{g} \mid f, g \text{ polynomials, } g(P) \neq 0 \right\}.$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
 K(X):= {f/g | f,g polynomials, g ≠ 0} the function field of X.
- $P \in X \rightsquigarrow \mathscr{O}_{X,P}$ the local ring of P on X.
- $\mathcal{O}_{X,P} := \left\{ \frac{f}{g} \mid f, g \text{ polynomials, } g(P) \neq 0 \right\}.$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• $\mathcal{O}_{X,P} \subseteq K(X)$ subring.

• Let $X = \mathbb{C}$. Then $A(X) = \mathbb{C}[t]$, $K(X) = \mathbb{C}(t)$.

- Let $X = \mathbb{C}$. Then $A(X) = \mathbb{C}[t]$, $K(X) = \mathbb{C}(t)$.
- Let $P = 0 \in X$. Then

 $\mathscr{O}_{X,P} = \{f/g \mid f,g \in \mathbb{C}[t],g(P) \neq 0\} = \{f/g \mid f,g \in \mathbb{C}[t],t \not\mid g\}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

- Let $X = \mathbb{C}$. Then $A(X) = \mathbb{C}[t]$, $K(X) = \mathbb{C}(t)$.
- Let $P = 0 \in X$. Then

 $\mathscr{O}_{X,P} = \{f/g \mid f,g \in \mathbb{C}[t], g(P) \neq 0\} = \{f/g \mid f,g \in \mathbb{C}[t], t \not\mid g\}.$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• For $h \in \mathbb{C}(t)$, let $h = t^{\alpha_h} h'$ such that $t \not| h'$, define,

- Let $X = \mathbb{C}$. Then $A(X) = \mathbb{C}[t]$, $K(X) = \mathbb{C}(t)$.
- Let $P = 0 \in X$. Then

 $\mathscr{O}_{X,P} = \{f/g \mid f,g \in \mathbb{C}[t],g(P) \neq 0\} = \{f/g \mid f,g \in \mathbb{C}[t],t \not\mid g\}.$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• For $h \in \mathbb{C}(t)$, let $h = t^{\alpha_h} h'$ such that $t \not| h'$, define, $v_P : \mathbb{C}(t) \setminus \{0\} \to \mathbb{Z}$ $h = t^{\alpha_h} h' \mapsto \alpha_h$.

- Let $X = \mathbb{C}$. Then $A(X) = \mathbb{C}[t]$, $K(X) = \mathbb{C}(t)$.
- Let $P = 0 \in X$. Then

 $\mathscr{O}_{X,P} = \{f/g \mid f,g \in \mathbb{C}[t],g(P) \neq 0\} = \{f/g \mid f,g \in \mathbb{C}[t],t \not\mid g\}.$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• For $h \in \mathbb{C}(t)$, let $h = t^{\alpha_h} h'$ such that t
mid h', define,

 $v_P : \mathbb{C}(t) \setminus \{0\} \to \mathbb{Z}$ $h = t^{\alpha_h} h' \mapsto \alpha_h.$ Then $\mathscr{O}_{X,P} = \{h \in \mathbb{C}(t) \mid v_P(h) > 0\} \cup \{0\}.$

• $\mathcal{O}_{X,P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

*O*_{X,P} ⊆ *K*(X) is a DVR, that is, a discrete valuation ring.
For a field *K*, a (discrete) valuation is a map,

• $\mathcal{O}_{X,P} \subseteq \mathcal{K}(X)$ is a DVR, that is, a discrete valuation ring.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For a field K, a (discrete) valuation is a map, $v: K \setminus \{0\} \rightarrow \mathbb{Z}$ such that

- $\mathcal{O}_{X,P} \subseteq \mathcal{K}(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map, $v: K \setminus \{0\} \rightarrow \mathbb{Z}$ such that
 - v(xy) = v(x) + v(y) $\forall x, y \in K \setminus \{0\}$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- $\mathcal{O}_{X,P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map, $v: K \setminus \{0\} \rightarrow \mathbb{Z}$ such that

•
$$v(xy) = v(x) + v(y)$$

• $v(x+y) \geq \min\{v(x), v(y)\}$

 $\forall x, y \in K \setminus \{0\}$ $\forall x, y \in K \setminus \{0\}$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

- $\mathcal{O}_{X,P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map, $v: K \setminus \{0\} \rightarrow \mathbb{Z}$ such that

•
$$v(xy) = v(x) + v(y)$$
 $\forall x, y \in K \setminus \{0\}$

• $v(x+y) \ge \min\{v(x), v(y)\}$ $\forall x, y \in K \setminus \{0\}$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• The valuation ring of v is $R_v := \{h \in K \setminus \{0\} \mid v(h) \ge 0\} \cup \{0\}.$

- $\mathcal{O}_{X,P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map, $v: K \setminus \{0\} \rightarrow \mathbb{Z}$ such that

•
$$v(xy) = v(x) + v(y)$$
 $\forall x, y \in K \setminus \{0\}$

• $v(x+y) \ge \min\{v(x), v(y)\}$ $\forall x, y \in K \setminus \{0\}$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- The valuation ring of v is $R_v := \{h \in K \setminus \{0\} \mid v(h) \ge 0\} \cup \{0\}.$
- In the previous example, v_P is a valuation of K(X), and $R_{v_P} = \mathcal{O}_{X,P}$.

DVRs

If P ∈ X is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then O_{X,P} is a DVR.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

DVRs

If P ∈ X is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then Ø_{X,P} is a DVR.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• $P \in X$ is a smooth point iff $\mathcal{O}_{X,P}$ is a DVR.

DVRs

If P ∈ X is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then Ø_{X,P} is a DVR.

 \leftrightarrow

• $P \in X$ is a smooth point iff $\mathscr{O}_{X,P}$ is a DVR.

geometric notion smooth algebraic notion DVR

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

DV/Rs

- If $P \in X$ is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then $\mathcal{O}_{X,P}$ is a DVR.
- $P \in X$ is a smooth point iff $\mathcal{O}_{X,P}$ is a DVR.

geometric notion smooth

DVR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HOMEWORK: Let $X = (y^2 = x^3) \subset \mathbb{C}^2$, $P = (0, 0) \in X$. Prove that $\mathcal{O}_{X,P}$ is **not** a valuation ring of K(X).

Singularities

Singularities

< ∃ >

Э

900

Image: A matched black

Both of these come from a sphere:

Singularities

590

Both of these come from a sphere:

• Let X be a compact curve

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.

• $\phi : \tilde{X} \to X$ induces a map between the function fields: $\phi^* : K(X) \to K(\tilde{X}).$

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.

- $\phi : \tilde{X} \to X$ induces a map between the function fields: $\phi^* : K(X) \to K(\tilde{X}).$
- $\bullet \ \phi^*$ is an isomorphism

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.

- $\phi : \tilde{X} \to X$ induces a map between the function fields: $\phi^* : K(X) \to K(\tilde{X}).$
- $\bullet \ \phi^*$ is an isomorphism, because
 - $\bullet~\phi$ is an isomorphism on a dense open set, and

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve X
 and a surjective map φ : X → X that is an isomorphism outside
 a finite set of points, i.e., over an open dense set.
- $\phi : \tilde{X} \to X$ induces a map between the function fields: $\phi^* : K(X) \to K(\tilde{X}).$
- $\bullet \ \phi^*$ is an isomorphism, because
 - $\bullet \ \phi$ is an isomorphism on a dense open set, and
 - rational functions are determined by their behavior on a dense open set.

Geometry \leftrightarrow Algebra

•
$$\phi: \tilde{X} \to X$$

is a resolution
of singularities

$$\leftrightarrow$$

 $ilde{X}$ is smooth and $\phi^*: \mathcal{K}(X) \simeq \mathcal{K}(ilde{X})$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Geometry \leftrightarrow Algebra

•
$$\phi: \tilde{X} \to X$$

is a resolution
of singularities

 \tilde{X} is smooth and $\longleftrightarrow \qquad \phi^*: K(X) \simeq K(\tilde{X})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Given X, how do we find \tilde{X} ?

Geometry \leftrightarrow Algebra

•
$$\phi: \tilde{X} \to X$$

is a resolution
of singularities

 $\begin{array}{c} \tilde{X} \text{ is smooth and} \\ & & \\ \phi^* : \mathcal{K}(X) \simeq \mathcal{K}(\tilde{X}) \end{array}$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Given X, how do we find \tilde{X} ?
- Find \tilde{X} smooth, such that $K(\tilde{X}) \simeq K(X)$.

• Original (geometric) problem:

Original (geometric) problem: Given a compact curve X, find a resolution of singularities, φ : X̃ → X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Original (geometric) problem: Given a compact curve X, find a resolution of singularities, φ : X̃ → X.

• $X \rightsquigarrow K(X)$.

Original (geometric) problem: Given a compact curve X, find a resolution of singularities, φ : X̃ → X.

• $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need K := K(X).

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, φ : X̃ → X.
- $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need K := K(X).
- Reformulated (algebro-geometric) problem: Given a field K, find a smooth compact curve X̃ such that K(X̃) ≃ K.

- ロ ト - 4 回 ト - 4 □

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, φ : X̃ → X.
- $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need K := K(X).
- Reformulated (algebro-geometric) problem: Given a field K, find a smooth compact curve X̃ such that K(X̃) ≃ K.

- ロ ト - 4 回 ト - 4 □

• Coming: Algebraic solution.

• Suppose we have \tilde{X} and let $P \in \tilde{X}$.

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.
 - $\{\mathscr{O}_{\tilde{X},P} | P \in \tilde{X}\} \subseteq \{R \subset K | R \text{ is a DVR}\}.$

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.
 - $\{\mathscr{O}_{\tilde{X},P} | P \in \tilde{X}\} = \{R \subset K | R \text{ is a DVR}\}.$

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.
 - $\{\mathscr{O}_{\tilde{X},P} | P \in \tilde{X}\} = \{R \subset K | R \text{ is a DVR}\}.$
- Evaluating functions f ∈ O_{X,P} at P, i.e., f → f(P) gives a homomorphism O_{X,P} → C.

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.
 - $\{\mathscr{O}_{\tilde{X},P} | P \in \tilde{X}\} = \{R \subset K | R \text{ is a DVR}\}.$
- Evaluating functions f ∈ O_{X,P} at P, i.e., f → f(P) gives a homomorphism O_{X,P} → C.

• The kernel of this map is a maximal ideal, $\mathfrak{m}_P = \{ f \in \mathscr{O}_{\tilde{X},P} | f(P) = 0 \}$, so $\mathscr{O}_{\tilde{X},P} / \mathfrak{m}_P \simeq \mathbb{C}$.

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
 - Then $\mathscr{O}_{\tilde{X},P} \subset K(\tilde{X}) \simeq K$.
 - $\{\mathscr{O}_{\tilde{X},P} | P \in \tilde{X}\} = \{R \subset K | R \text{ is a DVR}\}.$
- Evaluating functions f ∈ O_{X,P} at P, i.e., f → f(P) gives a homomorphism O_{X,P} → C.
- The kernel of this map is a maximal ideal, $\mathfrak{m}_P = \{ f \in \mathscr{O}_{\tilde{X},P} | f(P) = 0 \}$, so $\mathscr{O}_{\tilde{X},P} / \mathfrak{m}_P \simeq \mathbb{C}$.
- More generally, if $R_v \subset K$ is a valuation ring, then $\mathfrak{m}_v = \{f \in R_v | v(f) > 0\}$ is a maximal ideal and $R_v/\mathfrak{m}_v \simeq \mathbb{C}$.

• Start over (i.e., we don't have \tilde{X} yet).

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{\kappa} := \{ R \subset \kappa | R \text{ is a DVR} \}.$

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{\kappa} := \{ R \subset \kappa | R \text{ is a DVR} \}.$
 - Topology: $\emptyset \neq U \subseteq X$ is open iff $|X_K \setminus U| \leq \infty$.

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{\kappa} := \{ R \subset \kappa | R \text{ is a DVR} \}.$
 - Topology: $\emptyset \neq U \subseteq X$ is open iff $|X_K \setminus U| \leq \infty$.
 - Functions: For $U \subseteq X_K$ open, let $\mathscr{O}_{X_K}(U) := \cap_{R \in U} R \subset K$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{\kappa} := \{ R \subset \kappa | R \text{ is a DVR} \}.$
 - Topology: $\emptyset \neq U \subseteq X$ is open iff $|X_K \setminus U| \leq \infty$.
 - Functions: For $U \subseteq X_K$ open, let $\mathscr{O}_{X_K}(U) := \cap_{R \in U} R \subset K$.

・ロト・日本・モート モー うへぐ

• $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ gives a function:

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{\kappa} := \{ R \subset \kappa | R \text{ is a DVR} \}.$
 - Topology: $\emptyset \neq U \subseteq X$ is open iff $|X_K \setminus U| \leq \infty$.
 - Functions: For $U \subseteq X_K$ open, let $\mathscr{O}_{X_K}(U) := \cap_{R \in U} R \subset K$.
- $\forall f \in \mathscr{O}_{X_{\mathcal{K}}}(U)$ gives a function:

$$\begin{array}{l} : U \to \mathbb{C} \\ R \to R/\mathfrak{m}_R \simeq \mathbb{C} \\ f \mapsto f + \mathfrak{m}_R \in R/\mathfrak{m}_R \simeq \mathbb{C} \end{array}$$

・ロト・日本・モート モー うへぐ

• $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ is continuous.

- $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ is continuous.
- $f \in K$, then $f \lambda$ has finitely many zeroes.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ is continuous.
- $f \in K$, then $f \lambda$ has finitely many zeroes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\mathcal{O}_{X_{K},R} \simeq R$, a DVR.

- $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ is continuous.
- $f \in K$, then $f \lambda$ has finitely many zeroes.

- $\mathscr{O}_{X_{\kappa},R} \simeq R$, a DVR.
- $(X_{\mathcal{K}}, \mathscr{O}_{X_{\mathcal{K}}})$ is a smooth compact curve.

- $\forall f \in \mathscr{O}_{X_{\kappa}}(U)$ is continuous.
- $f \in K$, then $f \lambda$ has finitely many zeroes.
- $\mathcal{O}_{X_{\kappa},R} \simeq R$, a DVR.
- $(X_{\mathcal{K}}, \mathscr{O}_{X_{\mathcal{K}}})$ is a smooth compact curve.
- $\tilde{X} = X_{\kappa}$ is a resolution of singularities of X.

- ロ ト - 4 回 ト - 4 □

Geometry \leftrightarrow Algebra

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

• Let X, Y be smooth compact curves

• Let X, Y be smooth compact curves, and

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• $\phi: X \to Y$ a non-constant map.

• Let X, Y be smooth compact curves, and

- $\phi: X \to Y$ a non-constant map.
- In particular, $\phi^* : K(Y) \hookrightarrow K(X)$.

• Let X, Y be smooth compact curves, and

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- $\phi: X \to Y$ a non-constant map.
- In particular, $\phi^* : K(Y) \hookrightarrow K(X)$.
- Then $g(X) \ge g(Y)$.

- Let X, Y be smooth compact curves, and
- $\phi: X \to Y$ a non-constant map.
- In particular, $\phi^* : K(Y) \hookrightarrow K(X)$.
- Then $g(X) \ge g(Y)$.
- "Proof":

• Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.

• Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Prove that then $L \simeq \mathbb{C}(t)$.

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.
- Prove that then $L \simeq \mathbb{C}(t)$.
- Example: $\mathbb{C}(t^2) \subsetneq \mathbb{C}(t)$, but $\mathbb{C}(t^2) \simeq \mathbb{C}(t)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.
- Prove that then $L \simeq \mathbb{C}(t)$.
- Example: $\mathbb{C}(t^2) \subsetneq \mathbb{C}(t)$, but $\mathbb{C}(t^2) \simeq \mathbb{C}(t)$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• A purely algebraic problem.

• $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�?

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

• $K(X_L) \hookrightarrow K(\mathbb{P}^1) \rightsquigarrow \phi : \mathbb{P}^1 \to X_L.$

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.
- $K(X_L) \hookrightarrow K(\mathbb{P}^1) \rightsquigarrow \phi : \mathbb{P}^1 \to X_L.$

500

イロト イポト イヨト イヨト

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.

- $K(X_L) \hookrightarrow K(\mathbb{P}^1) \rightsquigarrow \phi : \mathbb{P}^1 \to X_L.$
- By Hurwitz's Theorem, $0 = g(\mathbb{P}^1) \ge g(X_L)$.

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $K(X_L) \hookrightarrow K(\mathbb{P}^1) \rightsquigarrow \phi : \mathbb{P}^1 \to X_L.$
- By Hurwitz's Theorem, $0 = g(\mathbb{P}^1) \ge g(X_L)$.
- Hence $g(X_L) = 0$, and then $X_L \simeq \mathbb{P}^1$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
 - $\mathbb{C}(t) \simeq K(\mathbb{P}^1).$
 - $\exists X_L$ smooth compact curve, $L \simeq K(X_L)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $K(X_L) \hookrightarrow K(\mathbb{P}^1) \rightsquigarrow \phi : \mathbb{P}^1 \to X_L.$
- By Hurwitz's Theorem, $0 = g(\mathbb{P}^1) \ge g(X_L)$.
- Hence $g(X_L) = 0$, and then $X_L \simeq \mathbb{P}^1$.
- Therefore $L \simeq K(X_L) \simeq K(\mathbb{P}^1) \simeq \mathbb{C}(t)$.

• Let X be an algebraic variety of dimension n.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and an isomorphism, $V \stackrel{\simeq}{\rightarrow} U$.

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and an isomorphism, $V \stackrel{\simeq}{\to} U$. Algebraic: X is rational if $K(X) \simeq \mathbb{C}(t_1, \ldots, t_n)$.

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and an isomorphism, $V \xrightarrow{\simeq} U$. Algebraic: X is rational if $K(X) \simeq \mathbb{C}(t_1, \ldots, t_n)$.

• Definition 2

Geometric: X is unirational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and a surjective map, $V \to U$.

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and an isomorphism, $V \xrightarrow{\simeq} U$. Algebraic: X is rational if $K(X) \simeq \mathbb{C}(t_1, \ldots, t_n)$.

• Definition 2

Geometric: X is unirational if $\exists U \subseteq X, V \subseteq \mathbb{P}^n$ open sets and a surjective map, $V \rightarrow U$. Algebraic: X is unirational if $K(X) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

• Geometric Version: A unirational curve is rational.

• Geometric Version: A unirational curve is rational.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• What about higher dimensional varieties?

- Geometric Version: A unirational curve is rational.
- What about higher dimensional varieties?
- The similar statement holds in dimension two:
 A unirational surface is rational, or analogously if
 C ⊆ L ⊆ C(t, u), then L is purely transcendental.

- Geometric Version: A unirational curve is rational.
- What about higher dimensional varieties?
- The similar statement holds in dimension two: A unirational surface is rational, or analogously if $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t, u)$, then L is purely transcendental.
- ISKOVSKIH-MANIN (1971), CLEMENS-GRIFFITHS (1972), Artin-Mumford (1972):

There exist three-dimensional unirational but not rational varieties, such as a some cubic and quartic hypersurfaces in \mathbb{P}^4 .

Higher Dimensions

• $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, deg X = d.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Higher Dimensions

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, deg X = d.
- MORIN (1940), PREDONZAN (1949): There exist a computable function ν such that if $n \ge \nu(d)$, then X is unirational.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Higher Dimensions

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, deg X = d.
- MORIN (1940), PREDONZAN (1949): There exist a computable function ν such that if $n \ge \nu(d)$, then X is unirational.
- KOLLÁR (1995): If d ≥ ²/₃(n + 4), and X is general, then it is not rational.

- ロ ト - 4 回 ト - 4 □

Open Problems

• $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension n and degree d.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Open Problems

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension *n* and degree *d*.
- Let n = 3 and d = 4.

Is the general quartic threefold unirational?

It is known that some are unirational and some are non-rational.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Open Problems

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension *n* and degree *d*.
- Let n = 3 and d = 4.
 Is the general quartic threefold unirational?
 It is known that some are unirational and some are non-rational.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Let n = 4 and d = 3.

Is the general cubic fourfold non-rational? It is known that they are unirational.

The End

Acknowledgement

This presentation was made using the beamertex LATEX macropackage of Till Tantau. http://latex-beamer.sourceforge.net