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University of Washington



Motto

”To me, algebraic geometry is
algebra with a kick”

–Solomon Lefschetz
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Geometry → Algebra

Let X ⊆ Cn be an (affine) algebraic variety,
i.e., the common zero set of some polynomials.

A(X ) = polynomials in n variables, restricted to X .

A(X ) is called the coordinate ring of X .
I.e., for f , g polynomials, f ∼ g iff f

∣∣
X

= g
∣∣
X

.

A(X ) is a finitely generated C-algebra: A(X ) = C[a1, . . . , an].

A(X ) is independent of the embedding X ⊆ Cn.
It only depends on X .

X ' Y iff A(X ) ' A(Y ).
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A = C[a1, . . . , an] ' C[x1, . . . , xn]/I

Since C[x1, . . . , xn] is noetherian, I is finitely generated:
I = (f1, . . . , fr ) and so X = Z (f1, . . . , fr ) works.

{affine varieties} ↔ {finitely generated C-algebras}.
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Curves

Complex Projective Curve

= Riemann Surface
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Zariski topology

Zariski topology: the crudest topology in which algebraic
functions are still continuous.

Zariski topology of a curve:
∅ 6= U ⊆ X is open iff |X \ U | <∞.

In particular, any two curves are homeomorphic.
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Example

Let X = C. Then A(X ) = C[t], K (X ) = C(t).

Let P = 0 ∈ X . Then

OX ,P = {f /g | f , g ∈ C[t], g(P) 6= 0} = {f /g | f , g ∈ C[t], t 6 | g} .

For h ∈ C(t), let h = tαhh′ such that t 6 | h′, define,

vP : C(t) \ {0} → Z
h = tαhh′ 7→ αh.

Then OX ,P = {h ∈ C(t) | vP(h) ≥ 0} ∪ {0}.
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OX ,P ⊆ K (X ) is a DVR, that is, a discrete valuation ring.

For a field K , a (discrete) valuation is a map,
v : K \ {0} → Z such that

v(xy) = v(x) + v(y) ∀x , y ∈ K \ {0}
v(x + y) ≥ min{v(x), v(y)} ∀x , y ∈ K \ {0}

The valuation ring of v is Rv := {h ∈ K \ {0} | v(h) ≥ 0}∪{0}.
In the previous example, vP is a valuation of K (X ), and
RvP = OX ,P .
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DVRs

If P ∈ X is a smooth point (i.e., X is a 1-dimensional complex
manifold near P), then OX ,P is a DVR.

P ∈ X is a smooth point iff OX ,P is a DVR.

geometric notion algebraic notion

smooth ↔ DVR

Homework:
Let X = (y 2 = x3) ⊂ C2, P = (0, 0) ∈ X .
Prove that OX ,P is not a valuation ring of K (X ).
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Prove that OX ,P is not a valuation ring of K (X ).
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Resolutions
Let X be a compact curve

A resolution of singularities of X is a smooth compact curve X̃
and a surjective map φ : X̃ → X that is an isomorphism outside
a finite set of points, i.e., over an open dense set.

φ : X̃ → X induces a map between the function fields:
φ∗ : K (X )→ K (X̃ ).
φ∗ is an isomorphism, because

• φ is an isomorphism on a dense open set, and

• rational functions are determined by their behavior on a dense
open set.
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Geometry ↔ Algebra

φ : X̃ → X X̃ is smooth and
is a resolution ↔ φ∗ : K (X ) ' K (X̃ )
of singularities

Given X , how do we find X̃?

Find X̃ smooth, such that K (X̃ ) ' K (X ).
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Finding a resolution

Original (geometric) problem:

Given a compact curve X , find a
resolution of singularities, φ : X̃ → X .

X  K (X ). In order to find X̃ we only need K := K (X ).

Reformulated (algebro-geometric) problem: Given a field K , find
a smooth compact curve X̃ such that K (X̃ ) ' K .

Coming: Algebraic solution.
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Algebraic Solution

Suppose we have X̃ and let P ∈ X̃ .

Then OX̃ ,P ⊂ K (X̃ ) ' K .

{OX̃ ,P

∣∣P ∈ X̃} {R ⊂ K
∣∣R is a DVR}.

Evaluating functions f ∈ OX̃ ,P at P , i.e., f 7→ f (P) gives a
homomorphism OX̃ ,P → C.

The kernel of this map is a maximal ideal,
mP = {f ∈ OX̃ ,P |f (P) = 0}, so OX̃ ,P/mP ' C.

More generally, if Rv ⊂ K is a valuation ring, then
mv = {f ∈ Rv |v(f ) > 0} is a maximal ideal and Rv/mv ' C.
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Algebraic Solution

Start over (i.e., we don’t have X̃ yet).

Let XK := {R ⊂ K
∣∣R is a DVR}.

Topology: ∅ 6= U ⊆ X is open iff |XK \ U| ≤ ∞.

Functions: For U ⊆ XK open, let OXK
(U) := ∩R∈UR ⊂ K .

∀ f ∈ OXK
(U) gives a function:

f : U → C
R → R

/
mR ' C

f 7→ f + mR ∈ R
/
mR ' C
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Algebraic Solution

∀ f ∈ OXK
(U) is continuous.

f ∈ K , then f − λ has finitely many zeroes.

OXK ,R ' R , a DVR.

(XK ,OXK
) is a smooth compact curve.

X̃ = XK is a resolution of singularities of X .
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Lüroth Problem

Let C ( L ⊆ C(t) be a field.

Prove that then L ' C(t).

Example: C(t2) ( C(t), but C(t2) ' C(t).

A purely algebraic problem.
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Geometric Solution
C ( L ⊆ C(t).

C(t) ' K (P1).
∃XL smooth compact curve, L ' K (XL).

K (XL) ↪→ K (P1)  φ : P1 → XL.

By Hurwitz’s Theorem, 0 = g(P1) ≥ g(XL).

Hence g(XL) = 0, and then XL ' P1.

Therefore L ' K (XL) ' K (P1) ' C(t).
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Rational vs. Unirational

Let X be an algebraic variety of dimension n.

Definition 1
Geometric: X is rational if ∃ U ⊆ X , V ⊆ Pn open sets and an
isomorphism, V

'→ U .
Algebraic: X is rational if K (X )'C(t1, . . . , tn).

Definition 2
Geometric: X is unirational if ∃ U ⊆ X , V ⊆ Pn open sets and
a surjective map, V → U .
Algebraic: X is unirational if K (X )↪→C(t1, . . . , tn).
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Lüroth Problem

Geometric Version: A unirational curve is rational.

What about higher dimensional varieties?

The similar statement holds in dimension two:
A unirational surface is rational, or analogously if
C ( L ⊆ C(t, u), then L is purely transcendental.

Iskovskih-Manin (1971), Clemens-Griffiths (1972),
Artin-Mumford (1972):
There exist three-dimensional unirational but not rational
varieties, such as a some cubic and quartic hypersurfaces in P4.
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Higher Dimensions

X ⊂ Pn+1 a smooth hypersurface, degX = d .

Morin (1940), Predonzan (1949): There exist a
computable function ν such that if n ≥ ν(d), then X is
unirational.

Kollár (1995): If d ≥ 2
3
(n + 4), and X is general, then it is

not rational.
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The End
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