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"To me, algebraic geometry is
algebra with a kick”

—Solomon Lefschetz
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Type of function ~ Type of Geometry

e continuous

e differentiable

e holomorphic

e algebraic
(polynomials,
rational functions)

Topology
Differential Geometry
Complex Geometry
Algebraic Geometry
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Geometry — Algebra

e Let X C C" be an (affine) algebraic variety,
i.e., the common zero set of some polynomials.

e A(X) = polynomials in n variables, restricted to X.

e A(X) is called the coordinate ring of X.
l.e., for f, g polynomials, f ~ g iff f’x = g‘X.

e A(X) is a finitely generated C-algebra: A(X) = C[ay, ...

o A(X) is independent of the embedding X C C”.
It only depends on X.

e X ~ Y iff A(X) ~ A(Y).



Summary

geometric object: X



Summary

geometric object: X
A



Summary

geometric object: X
A

algebraic object: A(X)



Summary

geometric object: X
A

algebraic object: A(X).
such that

X ~ Y iff AX) ~ A(Y).
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Example: Cusp

o Let X = {(x,y) | y* =x*} c C°

@ Then A(X) =~ Cl[x,y]/(y* — x*) =~ C[t?, £3] £ C][t].

=
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Example: Node

o Let X = {(x,y) | y* =x*(x +1)} Cc C=:

@ Then A(X) ~ Clx, y]/(y® — x*(x + 1)) # C[t].
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Geometry <+ Algebra

Let A= C[al,

., a,] be a finitely generated C-algebra.
s

4 X C C" algebraic variety, such that A(X) ~ A
A=Clay,...,an ~C[x1,...,x]/]
Since Clxy, ..
I =(f,..

., Xy] is noetherian, [ is finitely generated:
,f,) and so X = Z(f,

., f;) works.
{affine varieties} <> {finitely generated C-algebras}.
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Example: Node

Let X = {(x,y) | y* = x*(x+ 1)} C C?
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A curve C is rational if it can be parametrized

i.e., if there exists a surjective morphism

P! — C.
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/ariski topology

@ Zariski topology: the crudest topology in which algebraic
functions are still continuous.

@ Zariski topology of a curve:
) # U C X is open iff [X \ U] < o0,

@ In particular, any two curves are homeomorphic.
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Local Rings

@ Let X be a curve (a.k.a. a Riemann Surface).

f

K(X):= {— ' f, g polynomials, g # O}
g

the function field of X.

P € X ~ Ox p — the local ring of P on X.

f
ﬁX7P:: {—
g

Ox.p C K(X) subring.

f,g polynomials, g(P) # 0} .
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Example

o Let X = C. Then A(X) = C[t], K(X) = C(¢).
@ Let P=0¢€ X. Then
Oxp=A{f/g | f,gecClt],g(P)#0}={f/g | f g cClt] t/g}.
e For h € C(t), let h = t*h such that t} h’, define,
ve: C(t)\ {0} = Z
h=th — ay.
Then Ox p = {h € C(t) | ve(h) > 0} U{0}.
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Valuations

® Uxp C K(X)isaDVR, thatis, a discrete valuation ring.
v: K\ {0} — Z such that

e For a field K, a (discrete) valuation is a map,

o v(xy) = v(x)+ v(y) Vx,y € K\ {0}
o v(x+y) > min{v(x),v(y)}

Vx,y € K\ {0}

@ The valuation ring of vis R,:= {h € K\ {0} | v(h) > 0} U{0}.

@ In the previous example, vp is a valuation of K(X), and
R, = Ox p.
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DVRs

e If P € X is a smooth point (i.e., X is a 1-dimensional complex
manifold near P), then Ox p is a DVR.
@ P e X is a smooth point iff Ox p is a DVR.
geometric notion

smooth

<

algebraic notion

DVR
HOMEWORK:

Let X = (y* =x3) C C? P=(0,0) € X.

Prove that Ox p is not a valuation ring of K(X).
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Resolutions

@ Let X be a compact curve

@ A resolution of singularities of X is a smooth compact curve X
and a surjective map ¢ : X — X that is an isomorphism outside
a finite set of points, i.e., over an open dense set.

@ ¢: X — X induces a map between the function fields:
o*  K(X) = K(X).

@ ¢" is an isomorphism, because
e ¢ is an isomorphism on a dense open set, and

e rational functions are determined by their behavior on a dense
open set.
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Geometry <+ Algebra

e o: X = X
is a resolution

X is smooth and
E } :
of singularities

¢*  K(X) ~ K(X)
e Given X, how do we find X?

e Find X smooth, such that K(X) ~ K(X)
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Finding a resolution

e Original (geometric) problem: Given a compact curve X, find a
resolution of singularities, ¢ : X — X.

@ X ~ K(X). In order to find X we only need K:= K(X).

o Reformulated (algebro-geometric) problem: Given a field K, find
a smooth compact curve X such that K(X) ~ K.

@ Coming: Algebraic solution.

u]
8]
I
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Algebraic Solution

@ Suppose we have X and let P € X.

o Then 05 , € K(X) =~ K.
o {05 p|P e X} ={RCK|RisaDVR}.
e Evaluating functions f € ﬁf{,P at P, i.e., f + f(P) gives a
homomorphism O, , — C.
@ The kernel of this map is a maximal ideal,

mp = {f € O p|f(P) =0}, so Ox p/mp =~ C.

@ More generally, if R, C K is a valuation ring, then
m, = {f € R,|v(f) > 0} is a maximal ideal and R,/m, ~ C.

[m] = = =
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Algebraic Solution

e Start over (i.e., we don't have X yet).

e Let Xx:={R C K|R is a DVR}.
o Topology: () £ U C X is open iff | Xk \ U] < oo.

e Functions: For U C Xk open, let Ox, (U):=NgeyR C K.
o V f e Ux,(U) gives a function:

f:U—C

R%R/mRZC

f'—)f—FmRER/mRE(C
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e V f e Ux,(U)is continuous.
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Algebraic Solution

e V f e Ux,(U)is continuous.

e f € K, then f — A has finitely many zeroes
® Ux,.r~R,aDVR.

e (Xk,Ox,) is a smooth compact curve.

e X = Xy is a resolution of singularities of X
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Hurwitz's Theorem

@ Let X, Y be smooth compact curves, and
@ ¢ : X — Y a non-constant map.

@ In particular, ¢* : K(Y) — K(X).

@ Then g(X) > g(Y).

@ “Proof":
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Luroth Problem

@ Let C C L C C(t) be a field.

@ Prove that then L ~ C(t).

e Example: C(t?) C C(t), but C(t?) ~ C(t).

@ A purely algebraic problem.
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e CC LCC(b).

o C(t) ~ K(P).
e X, smooth compact curve, L >~ K(X.).

o K(X,) = K(PY) ~ ¢ : P* — X,.
e By Hurwitz's Theorem, 0 = g(P!) > g(X)).
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Geometric Solution

e CC LCC(b).

o C(t) ~ K(P).
e X, smooth compact curve, L >~ K(X.).

o K(X) = K(PY) ~ ¢ : P! — X,.

e By Hurwitz's Theorem, 0 = g(P!) > g(X)).

@ Hence g(X,) =0, and then X, ~ P*.
@ Therefore L ~ K(X,) ~ K(P') ~ C(t).
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@ Let X be an algebraic variety of dimension n.

@ Definition 1
Geometric: X is rational if 3 U C X, V C P" open sets and an
isomorphism, V = U.
Algebraic: X is rational if K(X)~C(ty,...,t,).

@ Definition 2
Geometric: X is unirational if 4 U C X, V C P" open sets and
a surjective map, V — U.
Algebraic: Xis unirational if K(X)—=C(ty,...,t,).
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Luroth Problem

@ Geometric Version: A unirational curve is rational.
@ What about higher dimensional varieties?

@ The similar statement holds in dimension two:
A unirational surface is rational, or analogously if
C C L C C(t,u), then L is purely transcendental.

e ISKOVSKIH-MANIN (1971), CLEMENS-GRIFFITHS (1972),
ARTIN-MUMFORD (1972):
There exist three-dimensional unirational but not rational
varieties, such as a some cubic and quartic hypersurfaces in P*.
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Higher Dimensions

e X C P""! a smooth hypersurface, deg X = d.

@ MORIN (1940), PREDONZAN (1949): There exist a
computable function v such that if n > v(d), then X is
unirational.

e KOLLAR (1995): If d > %(n +4), and X is general, then it is
not rational.
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Open Problems

e X C P""! a smooth hypersurface of dimension n and degree d.

@ Llet n=3and d = 4.

Is the general quartic threefold unirational?

It is known that some are unirational and some are non-rational.
@ Let n=4and d = 3.

Is the general cubic fourfold non-rational?

It is known that they are unirational.

it
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The End
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