Algebra $=$ Geometry

Sándor Kovács
University of Washington

Motto

"To me, algebraic geometry is algebra with a kick"

-Solomon Lefschetz

Geometry

Geometry $=$ Space + Functions

Geometry

- Geometry $=$ Space + Functions

Type of function
\rightsquigarrow
Type of Geometry

Geometry

- Geometry $=$ Space + Functions

Type of function
\rightsquigarrow
Type of Geometry

- continuous

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
\rightsquigarrow

Type of Geometry
Topology

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable

Type of Geometry
Topology

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
\leadsto
\leadsto
\leadsto

Type of Geometry
Topology
Differential Geometry

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
- holomorphic

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
- holomorphic
\leadsto
\leadsto
\leadsto
\leadsto

Type of Geometry
Topology
Differential Geometry
Complex Geometry

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
- holomorphic
- algebraic
M
\leadsto
\leadsto
\leadsto
\leadsto

Type of Geometry
Topology
Differential Geometry
Complex Geometry

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
- holomorphic
- algebraic
(polynomials, rational functions)

Type of Geometry

Topology
Differential Geometry
Complex Geometry

Geometry

- Geometry $=$ Space + Functions

Type of function

- continuous
- differentiable
- holomorphic
- algebraic
(polynomials, rational functions)
M
\leadsto
\leadsto
\leadsto
\leadsto

Type of Geometry

Topology
Differential Geometry
Complex Geometry
Algebraic Geometry

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.
I.e., for f, g polynomials, $f \sim g$ iff $\left.f\right|_{X}=\left.g\right|_{X}$.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.
I.e., for f, g polynomials, $f \sim g$ iff $\left.f\right|_{X}=\left.g\right|_{X}$.
- $A(X)$ is a finitely generated \mathbb{C}-algebra: $A(X)=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.
I.e., for f, g polynomials, $f \sim g$ iff $\left.f\right|_{X}=\left.g\right|_{X}$.
- $A(X)$ is a finitely generated \mathbb{C}-algebra: $A(X)=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$.
- $A(X)$ is independent of the embedding $X \subseteq \mathbb{C}^{n}$.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.
I.e., for f, g polynomials, $f \sim g$ iff $\left.f\right|_{X}=\left.g\right|_{X}$.
- $A(X)$ is a finitely generated \mathbb{C}-algebra: $A(X)=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$.
- $A(X)$ is independent of the embedding $X \subseteq \mathbb{C}^{n}$. It only depends on X.

Geometry \rightarrow Algebra

- Let $X \subseteq \mathbb{C}^{n}$ be an (affine) algebraic variety, i.e., the common zero set of some polynomials.
- $A(X)=$ polynomials in n variables, restricted to X.
- $A(X)$ is called the coordinate ring of X.
I.e., for f, g polynomials, $f \sim g$ iff $\left.f\right|_{X}=\left.g\right|_{X}$.
- $A(X)$ is a finitely generated \mathbb{C}-algebra: $A(X)=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$.
- $A(X)$ is independent of the embedding $X \subseteq \mathbb{C}^{n}$.

It only depends on X.

- $X \simeq Y$ iff $A(X) \simeq A(Y)$.

Summary

geometric object: X

Summary

geometric object：X
 \leadsto

Summary

geometric object: X \leadsto algebraic object: $A(X)$

Summary

geometric object: X \rightsquigarrow
algebraic object: $A(X)$,
such that
$X \simeq Y$ iff $A(X) \simeq A(Y)$.

Example: Line

- Let $X=\mathbb{C}$ be the affine line.

Example: Line

- Let $X=\mathbb{C}$ be the affine line:

Example: Line

- Let $X=\mathbb{C}$ be the affine line:
- Then $A(X) \simeq \mathbb{C}[t]$.

Example: Line

- Let $\left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2}$.

Example: Line?

- Let $\left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2}$:

Example: Line?

- Let $\left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2}$:

- Then $A(X) \simeq \mathbb{C}[x, y] /\left(y^{2}-x\right) \simeq \mathbb{C}[t]$.

Example: Line

- Let $\left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2}$:

- Then $A(X) \simeq \mathbb{C}[x, y] /\left(y^{2}-x\right) \simeq \mathbb{C}[t]$.

Example: Cusp

- Let $X=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subset \mathbb{C}^{2}$.

Example: Cusp

- Let $X=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subset \mathbb{C}^{2}$.

[^0]
Example: Cusp

- Let $X=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subset \mathbb{C}^{2}$.

- Then $A(X) \simeq \mathbb{C}[x, y] /\left(y^{2}-x^{3}\right) \simeq \mathbb{C}\left[t^{2}, t^{3}\right] \not 千 \mathbb{C}[t]$.

Example: Node

- Let $X=\left\{(x, y) \mid y^{2}=x^{2}(x+1)\right\} \subset \mathbb{C}^{2}$.

Example: Node

- Let $X=\left\{(x, y) \mid y^{2}=x^{2}(x+1)\right\} \subset \mathbb{C}^{2}$:

Example: Node

- Let $X=\left\{(x, y) \mid y^{2}=x^{2}(x+1)\right\} \subset \mathbb{C}^{2}$:

- Then $A(X) \simeq \mathbb{C}[x, y] /\left(y^{2}-x^{2}(x+1)\right) \nsucceq \mathbb{C}[t]$.

Geometry \leftarrow Algebra

Geometry \leftarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.

Geometry \leftarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.

Geometry \leftarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.

$\exists X \subseteq \mathbb{C}^{n}$ algebraic variety, such that $A(X) \simeq A$.

Geometry \leftrightarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.

$\exists X \subseteq \mathbb{C}^{n}$ algebraic variety, such that $A(X) \simeq A$.

$$
A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right] \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / l
$$

Geometry \leftrightarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.
$\exists X \subseteq \mathbb{C}^{n}$ algebraic variety, such that $A(X) \simeq A$.

$$
A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right] \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / l
$$

Since $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is noetherian, I is finitely generated:

$$
I=\left(f_{1}, \ldots, f_{r}\right) \text { and so } X=Z\left(f_{1}, \ldots, f_{r}\right) \text { works. }
$$

Geometry \leftrightarrow Algebra

Let $A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right]$ be a finitely generated \mathbb{C}-algebra.
$\exists X \subseteq \mathbb{C}^{n}$ algebraic variety, such that $A(X) \simeq A$.

$$
A=\mathbb{C}\left[a_{1}, \ldots, a_{n}\right] \simeq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / l
$$

Since $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is noetherian, $/$ is finitely generated:

$$
I=\left(f_{1}, \ldots, f_{r}\right) \text { and so } X=Z\left(f_{1}, \ldots, f_{r}\right) \text { works. }
$$

$\{$ affine varieties $\} \leftrightarrow\{$ finitely generated \mathbb{C}-algebras $\}$.

Curves

Complex Projective Curve $=$ Riemann Surface

Example: Line

$$
\text { Let } \left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2} .
$$

Example: Line

$$
\text { Let } \left.X=\left\{(x, y) \mid y^{2}=x\right)\right\} \subset \mathbb{C}^{2}
$$

Example: Cusp

$$
\text { Let } X=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subset \mathbb{C}^{2} .
$$

Example: Cusp

$$
\text { Let } X=\left\{(x, y) \mid y^{2}=x^{3}\right\} \subset \mathbb{C}^{2} .
$$

Example: Node

Let $X=\left\{(x, y) \mid y^{2}=x^{2}(x+1)\right\} \subset \mathbb{C}^{2}$.

Example: Node

$$
\text { Let } X=\left\{(x, y) \mid y^{2}=x^{2}(x+1)\right\} \subset \mathbb{C}^{2} .
$$

Rational Curves

A curve C is rational if it can be parametrized,

Rational Curves

A curve C is rational if it can be parametrized,
i.e., if there exists a surjective morphism

$$
\mathbb{P}^{1} \rightarrow C .
$$

Rational Curves

Rational Curves

Genus

genus 0

Genus

genus 0

genus 1

Genus

$$
\text { genus } 0
$$

genus 1

genus 2

Genus

$$
\text { genus } 0
$$

genus 1

genus $2, \ldots$

Non-Rational Curves

Non－Rational Curves

Non-Rational Curves

Non-Rational Curves

Non-Rational Curves

Zariski topology

- Zariski topology: the crudest topology in which algebraic functions are still continuous.

Zariski topology

- Zariski topology: the crudest topology in which algebraic functions are still continuous.
- Zariski topology of a curve:

Zariski topology

- Zariski topology: the crudest topology in which algebraic functions are still continuous.
- Zariski topology of a curve: $\emptyset \neq U \subseteq X$ is open iff $|X \backslash U|<\infty$.

Zariski topology

- Zariski topology: the crudest topology in which algebraic functions are still continuous.
- Zariski topology of a curve: $\emptyset \neq U \subseteq X$ is open iff $|X \backslash U|<\infty$.
- In particular, any two curves are homeomorphic.
- Let X be a curve (a.k.a. a Riemann Surface).

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
- $K(X):=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g \neq 0\right\}$ the function field of X.

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
- $K(X):=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g \neq 0\right\}$ the function field of X.
- $P \in X \rightsquigarrow \mathscr{O}_{X, P}$ - the local ring of P on X.

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
- $K(X):=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g \neq 0\right\}$ the function field of X.
- $P \in X \rightsquigarrow \mathscr{O}_{X, P}$ - the local ring of P on X.
- $\mathscr{O}_{X, P}:=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g(P) \neq 0\right\}$.

Local Rings

- Let X be a curve (a.k.a. a Riemann Surface).
- $K(X):=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g \neq 0\right\}$ the function field of X.
- $P \in X \rightsquigarrow \mathscr{O}_{X, P}$ - the local ring of P on X.
- $\mathscr{O}_{X, P}:=\left\{\left.\frac{f}{g} \right\rvert\, f, g\right.$ polynomials, $\left.g(P) \neq 0\right\}$.
- $\mathscr{O}_{X, P} \subseteq K(X)$ subring.

Example

- Let $X=\mathbb{C}$. Then $A(X)=\mathbb{C}[t], K(X)=\mathbb{C}(t)$.

Example

- Let $X=\mathbb{C}$. Then $A(X)=\mathbb{C}[t], K(X)=\mathbb{C}(t)$.
- Let $P=0 \in X$. Then

$$
\mathscr{O}_{X, P}=\{f / g \mid f, g \in \mathbb{C}[t], g(P) \neq 0\}=\{f / g \mid f, g \in \mathbb{C}[t], t X g\} .
$$

Example

- Let $X=\mathbb{C}$. Then $A(X)=\mathbb{C}[t], K(X)=\mathbb{C}(t)$.
- Let $P=0 \in X$. Then

$$
\mathscr{O}_{X, P}=\{f / g \mid f, g \in \mathbb{C}[t], g(P) \neq 0\}=\{f / g \mid f, g \in \mathbb{C}[t], t \nmid g\} .
$$

- For $h \in \mathbb{C}(t)$, let $h=t^{\alpha_{h}} h^{\prime}$ such that $t \nmid h^{\prime}$, define,

Example

- Let $X=\mathbb{C}$. Then $A(X)=\mathbb{C}[t], K(X)=\mathbb{C}(t)$.
- Let $P=0 \in X$. Then

$$
\mathscr{O}_{X, P}=\{f / g \mid f, g \in \mathbb{C}[t], g(P) \neq 0\}=\{f / g \mid f, g \in \mathbb{C}[t], t \nmid g\}
$$

- For $h \in \mathbb{C}(t)$, let $h=t^{\alpha_{h}} h^{\prime}$ such that $t \nmid h^{\prime}$, define,

$$
\begin{aligned}
v_{P}: \mathbb{C}(t) \backslash\{0\} & \rightarrow \mathbb{Z} \\
h=t^{\alpha_{h}} h^{\prime} & \mapsto \alpha_{h} .
\end{aligned}
$$

Example

- Let $X=\mathbb{C}$. Then $A(X)=\mathbb{C}[t], K(X)=\mathbb{C}(t)$.
- Let $P=0 \in X$. Then

$$
\mathscr{O}_{X, P}=\{f / g \mid f, g \in \mathbb{C}[t], g(P) \neq 0\}=\{f / g \mid f, g \in \mathbb{C}[t], t \nmid g\}
$$

- For $h \in \mathbb{C}(t)$, let $h=t^{\alpha_{h}} h^{\prime}$ such that $t \nmid h^{\prime}$, define,

$$
\begin{aligned}
v_{P}: \mathbb{C}(t) \backslash\{0\} & \rightarrow \mathbb{Z} \\
h=t^{\alpha_{h}} h^{\prime} & \mapsto \alpha_{h} .
\end{aligned}
$$

Then $\mathscr{O}_{X, P}=\left\{h \in \mathbb{C}(t) \mid v_{P}(h) \geq 0\right\} \cup\{0\}$.

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,
$v: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,
$v: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that
- $v(x y)=v(x)+v(y)$

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,
$v: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that
- $v(x y)=v(x)+v(y)$
- $v(x+y) \geq \min \{v(x), v(y)\}$

$$
\begin{aligned}
& \forall x, y \in K \backslash\{0\} \\
& \forall x, y \in K \backslash\{0\}
\end{aligned}
$$

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,
$v: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that
- $v(x y)=v(x)+v(y)$
- $v(x+y) \geq \min \{v(x), v(y)\}$

$$
\begin{aligned}
& \forall x, y \in K \backslash\{0\} \\
& \forall x, y \in K \backslash\{0\}
\end{aligned}
$$

- The valuation ring of v is $R_{v}:=\{h \in K \backslash\{0\} \mid v(h) \geq 0\} \cup\{0\}$.

Valuations

- $\mathscr{O}_{X, P} \subseteq K(X)$ is a DVR, that is, a discrete valuation ring.
- For a field K, a (discrete) valuation is a map,
$v: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that
- $v(x y)=v(x)+v(y) \quad \forall x, y \in K \backslash\{0\}$
- $v(x+y) \geq \min \{v(x), v(y)\} \quad \forall x, y \in K \backslash\{0\}$
- The valuation ring of v is $R_{v}:=\{h \in K \backslash\{0\} \mid v(h) \geq 0\} \cup\{0\}$.
- In the previous example, v_{P} is a valuation of $K(X)$, and $R_{v_{P}}=\mathscr{O}_{X, P}$.
- If $P \in X$ is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then $\mathscr{O}_{X, P}$ is a DVR.
- If $P \in X$ is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then $\mathscr{O}_{X, P}$ is a DVR.
- $P \in X$ is a smooth point iff $\mathscr{O}_{X, P}$ is a DVR.
- If $P \in X$ is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then $\mathscr{O}_{X, P}$ is a DVR.
- $P \in X$ is a smooth point iff $\mathscr{O}_{X, P}$ is a DVR.
geometric notion
smooth

algebraic notion DVR
- If $P \in X$ is a smooth point (i.e., X is a 1-dimensional complex manifold near P), then $\mathscr{O}_{X, P}$ is a DVR.
- $P \in X$ is a smooth point iff $\mathscr{O}_{X, P}$ is a DVR.
geometric notion
smooth

algebraic notion
DVR

Homework:
Let $X=\left(y^{2}=x^{3}\right) \subset \mathbb{C}^{2}, P=(0,0) \in X$.
Prove that $\mathscr{O}_{X, P}$ is not a valuation ring of $K(X)$.

Singularities

Singularities

Both of these come from a sphere:

Singularities

Both of these come from a sphere:

Resolutions

- Let X be a compact curve

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.
- $\phi: \tilde{X} \rightarrow X$ induces a map between the function fields:
$\phi^{*}: K(X) \rightarrow K(\tilde{X})$.

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.
- $\phi: \tilde{X} \rightarrow X$ induces a map between the function fields:
$\phi^{*}: K(X) \rightarrow K(\tilde{X})$.
- ϕ^{*} is an isomorphism

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.
- $\phi: \tilde{X} \rightarrow X$ induces a map between the function fields:
$\phi^{*}: K(X) \rightarrow K(\tilde{X})$.
- ϕ^{*} is an isomorphism, because
- ϕ is an isomorphism on a dense open set, and

Resolutions

- Let X be a compact curve
- A resolution of singularities of X is a smooth compact curve \tilde{X} and a surjective map $\phi: \tilde{X} \rightarrow X$ that is an isomorphism outside a finite set of points, i.e., over an open dense set.
- $\phi: \tilde{X} \rightarrow X$ induces a map between the function fields:
$\phi^{*}: K(X) \rightarrow K(\tilde{X})$.
- ϕ^{*} is an isomorphism, because
- ϕ is an isomorphism on a dense open set, and
- rational functions are determined by their behavior on a dense open set.

Geometry \leftrightarrow Algebra

- $\phi: \tilde{X} \rightarrow X$
is a resolution
of singularities
\tilde{X} is smooth and
$\phi^{*}: K(X) \simeq K(\tilde{X})$

Geometry \leftrightarrow Algebra

- $\phi: \tilde{X} \rightarrow X$
is a resolution of singularities
\tilde{X} is smooth and
$\phi^{*}: K(X) \simeq K(\tilde{X})$
- Given X, how do we find \tilde{X} ?

Geometry \leftrightarrow Algebra

- $\phi: \tilde{X} \rightarrow X$
is a resolution of singularities
\tilde{X} is smooth and
$\phi^{*}: K(X) \simeq K(\tilde{X})$
- Given X, how do we find \tilde{X} ?
- Find \tilde{X} smooth, such that $K(\tilde{X}) \simeq K(X)$.

Finding a resolution

- Original (geometric) problem:

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, $\phi: \tilde{X} \rightarrow X$.

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, $\phi: \tilde{X} \rightarrow X$.
- $X \rightsquigarrow K(X)$.

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, $\phi: \tilde{X} \rightarrow X$.
- $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need $K:=K(X)$.

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, $\phi: \tilde{X} \rightarrow X$.
- $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need $K:=K(X)$.
- Reformulated (algebro-geometric) problem: Given a field K, find a smooth compact curve \tilde{X} such that $K(\tilde{X}) \simeq K$.

Finding a resolution

- Original (geometric) problem: Given a compact curve X, find a resolution of singularities, $\phi: \tilde{X} \rightarrow X$.
- $X \rightsquigarrow K(X)$. In order to find \tilde{X} we only need $K:=K(X)$.
- Reformulated (algebro-geometric) problem: Given a field K, find a smooth compact curve \tilde{X} such that $K(\tilde{X}) \simeq K$.
- Coming: Algebraic solution.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{\chi}, P} \subset K(\tilde{X}) \simeq K$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{X}, P} \subset K(\tilde{X}) \simeq K$.
- $\left\{\mathscr{O}_{\tilde{x}, P} \mid P \in \tilde{X}\right\} \subseteq\{R \subset K \mid R$ is a DVR $\}$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{X}, P} \subset K(\tilde{X}) \simeq K$.
- $\left\{\mathscr{O}_{\tilde{x}, P} \mid P \in \tilde{X}\right\}=\{R \subset K \mid R$ is a DVR $\}$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{X}, P} \subset K(\tilde{X}) \simeq K$.
- $\left\{\mathscr{O}_{\tilde{X}, P} \mid P \in \tilde{X}\right\}=\{R \subset K \mid R$ is a DVR $\}$.
- Evaluating functions $f \in \mathscr{O}_{\tilde{\chi}, P}$ at P, i.e., $f \mapsto f(P)$ gives a homomorphism $\mathscr{O}_{\tilde{\chi}, P} \rightarrow \mathbb{C}$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{X}, P} \subset K(\tilde{X}) \simeq K$.
- $\left\{\mathscr{O}_{\tilde{x}, P} \mid P \in \tilde{X}\right\}=\{R \subset K \mid R$ is a DVR $\}$.
- Evaluating functions $f \in \mathscr{O}_{\tilde{x}, P}$ at P, i.e., $f \mapsto f(P)$ gives a homomorphism $\mathscr{O}_{\tilde{x}, P} \rightarrow \mathbb{C}$.
- The kernel of this map is a maximal ideal, $\mathfrak{m}_{P}=\left\{f \in \mathscr{O}_{\tilde{x}, P} \mid f(P)=0\right\}$, so $\mathscr{O}_{\tilde{x}, P} / \mathfrak{m}_{P} \simeq \mathbb{C}$.

Algebraic Solution

- Suppose we have \tilde{X} and let $P \in \tilde{X}$.
- Then $\mathscr{O}_{\tilde{X}, P} \subset K(\tilde{X}) \simeq K$.
- $\left\{\mathscr{O}_{\tilde{X}, P} \mid P \in \tilde{X}\right\}=\{R \subset K \mid R$ is a DVR $\}$.
- Evaluating functions $f \in \mathscr{O}_{\tilde{\chi}, P}$ at P, i.e., $f \mapsto f(P)$ gives a homomorphism $\mathscr{O}_{\tilde{\chi}, P} \rightarrow \mathbb{C}$.
- The kernel of this map is a maximal ideal, $\mathfrak{m}_{P}=\left\{f \in \mathscr{O}_{\tilde{x}, P} \mid f(P)=0\right\}$, so $\mathscr{O}_{\tilde{x}, P} / \mathfrak{m}_{P} \simeq \mathbb{C}$.
- More generally, if $R_{v} \subset K$ is a valuation ring, then $\mathfrak{m}_{v}=\left\{f \in R_{v} \mid v(f)>0\right\}$ is a maximal ideal and $R_{v} / \mathfrak{m}_{v} \simeq \mathbb{C}$.

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{K}:=\{R \subset K \mid R$ is a DVR $\}$.

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{K}:=\{R \subset K \mid R$ is a DVR $\}$.
- Topology: $\emptyset \neq U \subseteq X$ is open iff $\left|X_{K} \backslash U\right| \leq \infty$.

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{K}:=\{R \subset K \mid R$ is a DVR $\}$.
- Topology: $\emptyset \neq U \subseteq X$ is open iff $\left|X_{K} \backslash U\right| \leq \infty$.
- Functions: For $U \subseteq X_{K}$ open, let $\mathscr{O}_{X_{K}}(U):=\cap_{R \in U} R \subset K$.

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{K}:=\{R \subset K \mid R$ is a DVR $\}$.
- Topology: $\emptyset \neq U \subseteq X$ is open iff $\left|X_{K} \backslash U\right| \leq \infty$.
- Functions: For $U \subseteq X_{K}$ open, let $\mathscr{O}_{X_{K}}(U):=\cap_{R \in U} R \subset K$.
- $\forall f \in \mathscr{O}_{X_{K}}(U)$ gives a function:

Algebraic Solution

- Start over (i.e., we don't have \tilde{X} yet).
- Let $X_{K}:=\{R \subset K \mid R$ is a DVR $\}$.
- Topology: $\emptyset \neq U \subseteq X$ is open iff $\left|X_{K} \backslash U\right| \leq \infty$.
- Functions: For $U \subseteq X_{K}$ open, let $\mathscr{O} X_{K}(U):=\cap_{R \in U} R \subset K$.
- $\forall f \in \mathscr{O}_{X_{K}}(U)$ gives a function:

$$
\begin{aligned}
f: U & \rightarrow \mathbb{C} \\
R & \rightarrow R / \mathfrak{m}_{R} \simeq \mathbb{C} \\
f & \mapsto f+\mathfrak{m}_{R} \in R / \mathfrak{m}_{R} \simeq \mathbb{C}
\end{aligned}
$$

Algebraic Solution

- $\forall f \in \mathscr{O}_{X_{K}}(U)$ is continuous.

Algebraic Solution

- $\forall f \in \mathscr{O}_{X_{K}}(U)$ is continuous.
- $f \in K$, then $f-\lambda$ has finitely many zeroes.

Algebraic Solution

- $\forall f \in \mathscr{O}_{X_{K}}(U)$ is continuous.
- $f \in K$, then $f-\lambda$ has finitely many zeroes.
- $\mathscr{O}_{X_{K}, R} \simeq R$, a DVR.

Algebraic Solution

- $\forall f \in \mathscr{O}_{X_{K}}(U)$ is continuous.
- $f \in K$, then $f-\lambda$ has finitely many zeroes.
- $\mathcal{O}_{x_{K}, R} \simeq R$, a DVR.
- $\left(X_{K}, \mathscr{O}_{X_{k}}\right)$ is a smooth compact curve.

Algebraic Solution

- $\forall f \in \mathscr{O}_{X_{K}}(U)$ is continuous.
- $f \in K$, then $f-\lambda$ has finitely many zeroes.
- $\mathscr{O}_{X_{K}, R} \simeq R$, a DVR.
- $\left(X_{K}, \mathscr{O}_{X_{K}}\right)$ is a smooth compact curve.
- $\tilde{X}=X_{K}$ is a resolution of singularities of X.

Geometry \leftrightarrow Algebra

Hurwitz's Theorem

- Let X, Y be smooth compact curves

Hurwitz's Theorem

- Let X, Y be smooth compact curves, and
- $\phi: X \rightarrow Y$ a non-constant map.

Hurwitz's Theorem

- Let X, Y be smooth compact curves, and
- $\phi: X \rightarrow Y$ a non-constant map.
- In particular, $\phi^{*}: K(Y) \hookrightarrow K(X)$.

Hurwitz's Theorem

- Let X, Y be smooth compact curves, and
- $\phi: X \rightarrow Y$ a non-constant map.
- In particular, $\phi^{*}: K(Y) \hookrightarrow K(X)$.
- Then $g(X) \geq g(Y)$.

Hurwitz's Theorem

- Let X, Y be smooth compact curves, and
- $\phi: X \rightarrow Y$ a non-constant map.
- In particular, $\phi^{*}: K(Y) \hookrightarrow K(X)$.
- Then $g(X) \geq g(Y)$.
- "Proof":

Lüroth Problem

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.

Lüroth Problem

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.
- Prove that then $L \simeq \mathbb{C}(t)$.

Lüroth Problem

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.
- Prove that then $L \simeq \mathbb{C}(t)$.
- Example: $\mathbb{C}\left(t^{2}\right) \subsetneq \mathbb{C}(t)$, but $\mathbb{C}\left(t^{2}\right) \simeq \mathbb{C}(t)$.

Lüroth Problem

- Let $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$ be a field.
- Prove that then $L \simeq \mathbb{C}(t)$.
- Example: $\mathbb{C}\left(t^{2}\right) \subsetneq \mathbb{C}(t)$, but $\mathbb{C}\left(t^{2}\right) \simeq \mathbb{C}(t)$.
- A purely algebraic problem.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.
- $K\left(X_{L}\right) \hookrightarrow K\left(\mathbb{P}^{1}\right) \rightsquigarrow \phi: \mathbb{P}^{1} \rightarrow X_{L}$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.
- $K\left(X_{L}\right) \hookrightarrow K\left(\mathbb{P}^{1}\right) \rightsquigarrow \phi: \mathbb{P}^{1} \rightarrow X_{L}$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.
- $K\left(X_{L}\right) \hookrightarrow K\left(\mathbb{P}^{1}\right) \rightsquigarrow \phi: \mathbb{P}^{1} \rightarrow X_{L}$.
- By Hurwitz's Theorem, $0=g\left(\mathbb{P}^{1}\right) \geq g\left(X_{L}\right)$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.
- $K\left(X_{L}\right) \hookrightarrow K\left(\mathbb{P}^{1}\right) \rightsquigarrow \phi: \mathbb{P}^{1} \rightarrow X_{L}$.
- By Hurwitz's Theorem, $0=g\left(\mathbb{P}^{1}\right) \geq g\left(X_{L}\right)$.
- Hence $g\left(X_{L}\right)=0$, and then $X_{L} \simeq \mathbb{P}^{1}$.

Geometric Solution

- $\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t)$.
- $\mathbb{C}(t) \simeq K\left(\mathbb{P}^{1}\right)$.
- $\exists X_{L}$ smooth compact curve, $L \simeq K\left(X_{L}\right)$.
- $K\left(X_{L}\right) \hookrightarrow K\left(\mathbb{P}^{1}\right) \rightsquigarrow \phi: \mathbb{P}^{1} \rightarrow X_{L}$.
- By Hurwitz's Theorem, $0=g\left(\mathbb{P}^{1}\right) \geq g\left(X_{L}\right)$.
- Hence $g\left(X_{L}\right)=0$, and then $X_{L} \simeq \mathbb{P}^{1}$.
- Therefore $L \simeq K\left(X_{L}\right) \simeq K\left(\mathbb{P}^{1}\right) \simeq \mathbb{C}(t)$.

Rational vs. Unirational

- Let X be an algebraic variety of dimension n.

Rational vs. Unirational

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and an isomorphism, $V \xrightarrow{\simeq} U$.

Rational vs. Unirational

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and an isomorphism, $V \xrightarrow{\simeq} U$.
Algebraic: X is rational if $K(X) \simeq \mathbb{C}\left(t_{1}, \ldots, t_{n}\right)$.

Rational vs. Unirational

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and an isomorphism, $V \stackrel{\simeq}{\leftrightarrows} U$.
Algebraic: X is rational if $K(X) \simeq \mathbb{C}\left(t_{1}, \ldots, t_{n}\right)$.

- Definition 2

Geometric: X is unirational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and a surjective map, $V \rightarrow U$.

Rational vs. Unirational

- Let X be an algebraic variety of dimension n.
- Definition 1

Geometric: X is rational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and an isomorphism, $V \stackrel{\simeq}{\leftrightarrows} U$.
Algebraic: X is rational if $K(X) \simeq \mathbb{C}\left(t_{1}, \ldots, t_{n}\right)$.

- Definition 2

Geometric: X is unirational if $\exists U \subseteq X, V \subseteq \mathbb{P}^{n}$ open sets and a surjective map, $V \rightarrow U$. Algebraic: X is unirational if $K(X) \hookrightarrow \mathbb{C}\left(t_{1}, \ldots, t_{n}\right)$.

- Geometric Version: A unirational curve is rational.
- Geometric Version: A unirational curve is rational.
- What about higher dimensional varieties?

Lüroth Problem

- Geometric Version: A unirational curve is rational.
- What about higher dimensional varieties?
- The similar statement holds in dimension two:

A unirational surface is rational, or analogously if
$\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t, u)$, then L is purely transcendental.

Lüroth Problem

- Geometric Version: A unirational curve is rational.
- What about higher dimensional varieties?
- The similar statement holds in dimension two:

A unirational surface is rational, or analogously if
$\mathbb{C} \subsetneq L \subseteq \mathbb{C}(t, u)$, then L is purely transcendental.

- Iskovskih-Manin (1971), Clemens-Griffiths (1972), Artin-Mumford (1972):
There exist three-dimensional unirational but not rational varieties, such as a some cubic and quartic hypersurfaces in \mathbb{P}^{4}.

Higher Dimensions

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, $\operatorname{deg} X=d$.

Higher Dimensions

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, $\operatorname{deg} X=d$.
- Morin (1940), Predonzan (1949): There exist a computable function ν such that if $n \geq \nu(d)$, then X is unirational.

Higher Dimensions

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface, $\operatorname{deg} X=d$.
- Morin (1940), Predonzan (1949): There exist a computable function ν such that if $n \geq \nu(d)$, then X is unirational.
- Kollár (1995): If $d \geq \frac{2}{3}(n+4)$, and X is general, then it is not rational.

Open Problems

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension n and degree d.

Open Problems

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension n and degree d.
- Let $n=3$ and $d=4$.

Is the general quartic threefold unirational?
It is known that some are unirational and some are non-rational.

Open Problems

- $X \subset \mathbb{P}^{n+1}$ a smooth hypersurface of dimension n and degree d.
- Let $n=3$ and $d=4$.

Is the general quartic threefold unirational?
It is known that some are unirational and some are non-rational.

- Let $n=4$ and $d=3$.

Is the general cubic fourfold non-rational?
It is known that they are unirational.

The End

Acknowledgement

This presentation was made using the beamertex ATEX macropackage of Till Tantau. http://latex-beamer.sourceforge.net

[^0]:

