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1 is trivial
e C is a plane cubic

m1 IS abelian
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@ B — smooth projective curve of genus g, .
A C B — finite set of points. Exampies and Detitons

Isotrivial and Non-isotrivial

Shafarevich’s
Conjecture

The Proof

Generalizations

@ AfamilyoverB\ A, f: X — B\ A,isa
surjective (flat) map with equidimensional,
connected fibers.

@ A family is smooth if X, = f ~*(b) is smooth for
Vb € B.
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are there?
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@ Fix B, A as before, q € Z, q > 2. Then
(I) there exists only finitely many non-isotrivial
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smooth families of curves of genus g over B \ A.
These will be called “admissible families”.

29(B) —2+#A <0,

then there aren’t any admissible families.
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) L. . L. Conjecture
(I) there exists only finitely many non-isotrivial
smooth families of curves of genus g over B \ A.
These will be called “admissible families”.
(I If

@ Note:

29(B) -2+ #A <0,
then there aren’t any admissible families.

29(B)—2+#A§0<:>{
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@ X Brody hyperbolic implies that

e V C* — X holomorphic map is constant,

e VT — X holomorphic map is constant, for any
complex torus T = C" /72",
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@ A complex analytic space X is Brody hyperbolic ~ Shafareviens
if every C — X holomorphic map is constant.
@ X Brody hyperbolic is equivalent to
e V C* — X holomorphic map is constant,
e VT — X holomorphic map is constant, for any
complex torus T = C" /72",
@ An algebraic variety X is algebraically
hyperbolic if

e vV AM\ {0} — X regular map is constant
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@ A complex analytic space X is Brody hyperbolic ~ Shafarevichs

Conjecture

if every C — X holomorphic map is constant. sanens
@ X Brody hyperbolic is equivalent to The Proof
e vV C* — X holomorphic map is constant, Generalizations

e VT — X holomorphic map is constant, for any
complex torus T = C"/Z?",

@ An algebraic variety X is algebraically
hyperbolic if
e V AL\ {0} — X regular map is constant, and
e VA — X regular map is constant, for any
abelian variety (projective algebraic group) A.
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@ B —smooth projective curve,
A C B —finite subset.
e Ifg(B) > 2, then

B\ A is hyperbolic for arbitrary A.
e Ifg(B) =1, then

B\ A is hyperbolic < A # 0.
e Ifg(B) =0, then
B\ A is hyperbolic < #A > 3.

@ B\ A is hyperbolic < 29(B) — 2 + #A > 0.
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(I) there exists only finitely many non-isotrivial
smooth families of curves of genus g over
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(I) there exists only finitely many non-isotrivial
smooth families of curves of genus g over
B\ A, “admissible families”.
(I If

2g(B) — 2 + #A < 0,

then there aren’t any admissible families.
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Shafarevich’s Conjecture: Take Two

@ Fix B, A as before, q € Z, q > 2. Then

(1) there exists only finitely many non-isotrivial
smooth families of curves of genus g over
B\ A, “admissible families”.
(1) If
29(B) — 2+ #A <0,

then there aren’t any admissible families.

(II") If there exists any admissible families, then
B\ A is hyperbolic.
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@ The Shafarevich Conjecture was confirmed by Shafarevich's
PARSHIN (1968) for A = (), and by
ARAKELOV (1971) in general.
@ INTERMEZZO: The number field case.
e Mordell Conjecture (1922):

F —a number field (a finite extension field of Q),
C — a smooth projective curve of genus > 2
defined over F.
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e Mordell Conjecture (1922):
F —a number field (a finite extension field of Q),
C — a smooth projective curve of genus > 2
defined over F.
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History

@ The Shafarevich Conjecture was confirmed by
PARSHIN (1968) for A = (), and by
ARAKELOV (1971) in general.
@ INTERMEZZO: The number field case.
e Mordell Conjecture (1922):
F —a number field (a finite extension field of Q),
C — a smooth projective curve of genus > 2
defined over F.
Then C has only finitely many F-rational points.
This was proved by FALTINGS (1983).
e The Shafarevich Conjecture has a number field
version as well.
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@ Letf : X — B be a non-isotrivial family of
projective curves of genus > 2.

Families

i.e.,0c:B — X,suchthatf oo =idg.

@ This was proved by MANIN (1963).

Shafarevich‘s
Then there are only finitely many sections of f,
And again by PARSHIN (1968).
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@ Letf : X — B be a non-isotrivial family of RlEEEE
projective curves of genus > 2.
Then there are only finitely many sections of f,
i.e.,0c:B — X,suchthatf oo =idg.
@ This was proved by MANIN (1963).
And again by PARSHIN (1968) using
“Parshin’s Covering Trick” to prove that

The Shafarevich Conjecture
implies
The Mordell Conjecture.
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@ A deformation of an algebraic variety X is a Families
family F : X — T such that there existsat € T
that X ~ Xt.
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F :X — B x T such that there existsat € T
that (X — B) ~ (X; — B x {t}), where
Xi =F (B x {t}).
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F :X — B x T such that there existsat € T
that (X — B) ~ (X; — B x {t}), where
Xi =F (B x {t}).
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@ Two families X; — B and X, — B have the Families
same deformation type if there exists a family
F:X—BxT,t,t, €T such that
(Xy — B) ~ (%X, — B x {t}) and
(XZ — B) ~ (%tz — B x {t})
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same deformation type if there exists a family

(Xl — B) ~

(XZ d B)

@ Two families X; — B and X, — B have the

F:X—BxT,t;,t, € T such that
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(%, - B x{t})and
(X, — B x {t}).
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@ ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
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(B) Boundedness: There are only finitely many
deformation types of admissible families.




The Arakelov-Parshin method

@ ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many
deformation types of admissible families.
(R) Rigidity: Admissible families do not admit
non-trivial deformations.
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@ ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many
deformation types of admissible families.
(R) Rigidity: Admissible families do not admit
non-trivial deformations.

@ Note:
e (B) and (R) together imply (1).
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@ ARAKELOV and PARSHIN reformulated the Families
Shafarevich conjecture the following way: s
(B) Boundedness: There are only finitely many The Proof
deformation types of admissible families. o P i
(R) Rigidity: Admissible families do not admit Generalizations

non-trivial deformations.
(H) Hyperbolicity: If there exist admissible families,
then B \ A is hyperbolic.

@ Note:
e (B) and (R) together imply (1).
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Curves

@ ARAKELOV and PARSHIN reformulated the Families
Shafarevich conjecture the following way: s
(B) Boundedness: There are only finitely many The Proof
deformation types of admissible families. o P i
(R) Rigidity: Admissible families do not admit Generalizations

non-trivial deformations.
(H) Hyperbolicity: If there exist admissible families,
then B \ A is hyperbolic.

@ Note:
e (B) and (R) together imply (1).
e (H) = (II") and hence is equivalent to (II).
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@ Weak Boundedness
@ Recent Results
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@ First order of business:
@ Generalize the setup.

@ Find a replacement for “genus” and “q > 2".
e Hilbert polynomial, h.
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@ First order of business:
@ Generalize the setup.

@ Find a replacement for “genus” and “q > 2"
e Hilbert polynomial, h.

e Kodaira dimension, x = —00,0,1,...,dim
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Kodaira
type degree genus dimension
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@ Plane curves:

Kodaira
type degree genus dimension
Pt deg=1,2 g=0 K = —00
elliptic deg =3 g=1 k=0
general deg > 4 g>2 k=1

type
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@ Hypersurfaces in P":
type

Fano
Calabi-Yau

general type

degree

deg<n+1

deg=n+1

deg >n+1

«0O0>» «F)>r « =>»

« =

Shafarevich
Conijecture

Sandor Kovacs
Curves
Kodaira

dimension

R = —00

k=20

k =dim

>




_ o

Conijecture

Sandor Kovacs
@ Hypersurfaces in P":

Curves

Kodaira Familes
type degree dimension
Fano deg<n+1 K= —00
Calabi-Yau deg=n+1 k=0
general type deg >n+1 k= dim

@ Products:

dim(X x Y)=dimX +dimY
KX xY) =r(X)+r(Y)
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Recall: A curve C is of general type iff g(C) > 2.
@ Genus is replaced with the Hilbert polynomial.
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@ X is of general type if x(X) = dim X.

Families

Shafarevich’s

Recall: A curve C is of general type iff g(C) > 2.
@ Genus is replaced with the Hilbert polynomial.

For curves, the Hilbert polynomial is determined
by the genus, so this is a natural generalization.
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e f is non-isotrivial
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@ Setup: Fix B a smooth projective curve, A C B
a finite subset, and h a polynomial.
@ f : X — B is an admissible family if
e f is non-isotrivial
e forallb € B\ A, X; is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.
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The Shafarevich Conjecture

@ Setup: Fix B a smooth projective curve, A C B
a finite subset, and h a polynomial.
@ f : X — B is an admissible family if
e f is non-isotrivial
e forallb € B\ A, Xy is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

@ “Canonically embedded” means that it is
embedded by the global sections of wy! .
In particular, Xy, is of general type.
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(B) Boundedness: There are only finitely many
deformation types of admissible families.
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(B) Boundedness: There are only finitely many oS
deformation types of admissible families.

(R) Rigidity: Admissible families do not admit
non-trivial deformations.
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(B) Boundedness: There are only finitely many
deformation types of admissible families.

(R) Rigidity: Admissible families do not admit
non-trivial deformations.

(H) Hyperbolicity: If there exist admissible families,
then B \ A is hyperbolic.
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deformation types of admissible families. The Proof
(R) Rigidity: Admissible families do not admit s s
non-trivial deformations. ey
(H) Hyperbolicity: If there exist admissible families, R
then B \ A is hyperbolic. Ry

Where Next?

(WB) Weak Boundedness:
If f : X — B is an admissible family, then
deg f*%'?/s is bounded in terms of B, A, h, m.
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@ Moduli Theory + (WB) = (B)

o (K__,2002)

(WB) = (H)

@ Hence Weak Boundedness is the key statement
towards proving (B) and (H).
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@ Moduli Theory + (WB) = (B) Shafarevich's
o (K__,2002) (WB)= (H)

@ Hence Weak Boundedness is the key statement
towards proving (B) and (H).

(WB) Weak Boundedness:
If f : X — B is an admissible family, then
deg f*wQ‘/B is bounded in terms of B, A, h, m.
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@ BEAUVILLE (1981):
(H) holds for dim(X/B) = 1.

Shafarevich’s

@ CATANESE-SCHNEIDER (1994):

(H) can be used for giving upper bounds on the

size of automorphisms groups of varieties of
general type.
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Modern History: Hyperbolicity

@ BEAUVILLE (1981):
(H) holds for dim(X/B) = 1.

@ CATANESE-SCHNEIDER (1994):
(H) can be used for giving upper bounds on the
size of automorphisms groups of varieties of
general type.

@ SHOKUROV (1995):
(H) can be used to prove quasi-projectivity of
moduli spaces of varieties of general type.
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(H) holds for dim(X /B) arbitrary and g(B) = 1
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(H) holds for dim(X /B) = 2.
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@ MIGLIORINI (1995):
(H) holds for dim(X/B) =2 and g(B) = 1.

Shafarevich’s

® K___ (1996):

(H) holds for dim(X /B) arbitrary and g(B) = 1.
o K (1997):

(H) holds for dim(X /B) = 2.
o K___(2000):

(H) holds for dim(X /B) arbitrary.
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@ MIGLIORINI (1995): Shafarevich's
(H) holds for dim(X/B) =2 and g(B) = 1.

@ K__ (1996):

(H) holds for dim(X /B) arbitrary and g(B) = 1.
@ K___ (1997):

(H) holds for dim(X/B) = 2.
@ K___ (2000):

(H) holds for dim(X /B) arbitrary.

@ VIEHWEG AND ZuUO (2002):
Brody hyperbolicity holds as well.
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@ BEDULEV AND VIEHWEG (2000):
¢ (B) holds for dim(X /B) = 2, and
e (WB) holds for dim(X /B) arbitrary.
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@ BEDULEV AND VIEHWEG (2000):
¢ (B) holds for dim(X /B) = 2, and
e (WB) holds for dim(X /B) arbitrary.
that (H) holds in these cases.

As a byproduct of their proof they also obtained
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¢ (B) holds for dim(X /B) = 2, and
e (WB) holds for dim(X /B) arbitrary.
As a byproduct of their proof they also obtained
that (H) holds in these cases.
@ K__ (2002), VIEHWEG AND ZUO (2002):

(WB) holds under more general assumptions.




Modern History:
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@ BEDULEV AND VIEHWEG (2000):
¢ (B) holds for dim(X/B) = 2, and
e (WB) holds for dim(X /B) arbitrary.
As a byproduct of their proof they also obtained
that (H) holds in these cases.

@ K__ (2002), VIEHWEG AND ZU0 (2002):
(WB) holds under more general assumptions.

@ K___ (2002):
(WB) implies (H).
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@ FALTINGS (1983)

@ ZHANG (1997)

@ OGUISO AND VIEHWEG (2001)
@ ..and more.
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it is a 1-codimensional subvariety of B.
@ A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
having maximal variation in moduli.




Higher dimensional bases

Many details change:

@ Instead of A being a finite subset,
it is a 1-codimensional subvariety of B.

@ A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
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Many details change:

@ Instead of A being a finite subset,
it is a 1-codimensional subvariety of B.

@ A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
having maximal variation in moduli.

@ Viehweg's Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, A) is of log general type.

That is, the log-Kodaira dimension of B is
maximal: x(B, A) = dim B.
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moduli, then (B, A) is of log general type.
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@ K__ (2003), VIEHWEG-ZUO, (2003):

Viehweg’s conjecture holds for B = P".
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@ Let Y — B be an arbitrary non-isotrivial family —
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. . . . Curves
@ f: X =Y xC — Bisan admissible family, o
an d Shafarevich‘s
@ any deformation of C gives a deformation of f
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Families
@ Question: Under what additional conditions
does (R) hold?

@ K__ (2004), VIEHWEG-ZUO, (2004):

Rigidity holds for strongly*non-isotrivial families

Lunfortunately the margin is not wide enough to define
this term.
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e Geometric description of strongly non-isotrivial
families.
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Families

@ Work in progress:

e Geometric description of strongly non-isotrivial
families.

o Joint work with Stefan Kebekus (Kdln):
Families over two-dimensional bases.
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This presentation was made using the

beamertex KTEX macropackage of Till Tantau.
http://1 at ex- beamer. sour cef or ge. net
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