Families of varieties of general type: the Shafarevich conjecture and related problems

Sándor Kovács

University of Washington

Motto

Sándor Kovács

Curves
Families
Shafarevich's Conjecture

The Proof
Generalizations
algebraic geometry is algebra with a kick"
-Solomon Lefschetz

Outline

Generalizations
(3) Shafarevich's Conjecture
(4) The Proof of Shafarevich's Conjecture
(5) Generalizations

Outline

Shafarevich

Conjecture
Sándor Kovács

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families
Shafarevich's
Conjecture
The Proof

- Riemann Surfaces
- Genus
- Topology, Arithmetic and Differential Geometry

Curves

Shafarevich

Conjecture
Sándor Kovács

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Smooth Complex Projective Curve

Families

Shafarevich's
Conjecture
The Proof
Generalizations

Curves

Shafarevich
Conjecture

Sándor Kovács

Curves

Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Smooth Complex Projective Curve

Compact Riemann Surface

Shafarevich's Conjecture

The Proof
Generalizations

Outline

Shafarevich

Conjecture
Sándor Kovács

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families

Shafarevich's
Conjecture
The Proof
Generalizations

- Riemann Surfaces
- Genus
- Topology, Arithmetic and Differential Geometry

Genus

Shafarevich
 Conjecture

Sándor Kovács

Curves
Riemann Surfaces
Genus
Topology, Arithmetic and Differential Geometry

Families

Shafarevich's
Conjecture
The Proof
Generalizations

Genus

Shafarevich
Conjecture

Sándor Kovács

genus 0

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families

Shafarevich's
Conjecture
The Proof
Generalizations

Genus

Shafarevich
 Conjecture

Sándor Kovács
genus 0
genus 1

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families

Shafarevich's Conjecture

The Proof
Generalizations

Genus

Shafarevich
Conjecture

Sándor Kovács

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families

Shafarevich's Conjecture

The Proof
Generalizations

Genus

Shafarevich
Conjecture

Sándor Kovács

Curves
Riemann Surfaces

Genus

Topology, Arithmetic and Differential Geometry

Families

Shafarevich's Conjecture

The Proof
Generalizations

Outline

Shafarevich

Conjecture
Sándor Kovács
Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

Shafarevich's
Conjecture
The Proof

- Riemann Surfaces
- Genus
- Topology, Arithmetic and Differential Geometry

Smooth Projective Curves

Shafarevich Conjecture

Riemann Surfaces
Genus
Topology, Arithmetic and Differential Geometry

Families

Shafarevich's
Conjecture
The Proof
Generalizations

C is a plane cubic

Smooth Projective Curves

Shafarevich
Conjecture
Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types:

Shafarevich's Conjecture

The Proof
Generalizations

Smooth Projective Curves

Shafarevich

Conjecture
Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types:
- $C \simeq \mathbb{P}^{1}$ (rational)

Families

Shafarevich's Conjecture

The Proof
Generalizations

Smooth Projective Curves

Shafarevich
Conjecture

Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types:
- $C \simeq \mathbb{P}^{1}$ (rational)

Shafarevich's Conjecture

- C is a plane cubic (elliptic)
C has genus ≥ 2 (general type)

Smooth Projective Curves

 ConjectureSándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types:
- $C \simeq \mathbb{P}^{1}$ (rational)
- C is a plane cubic (elliptic)
- C has genus ≥ 2 (general type)

Topology of Curves

Shafarevich Conjecture

Sándor Kovács

Curves

Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types, and...
- $C \simeq \mathbb{P}^{1}$ (rational)
- C is a plane cubic (elliptic)
- C has genus ≥ 2 (general type)

Topology of Curves

Shafarevich Conjecture

Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...their fundamental groups come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Shafarevich's Conjecture

The Proof
Generalizations

Topology of Curves

Shafarevich
Conjecture
Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...their fundamental groups come in three types:
- $C \simeq \mathbb{P}^{1}$ π_{1} is trivial

Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
- C has genus ≥ 2

Topology of Curves

Shafarevich
Conjecture
Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...their fundamental groups come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic π_{1} is trivial

Shafarevich's Conjecture

The Proof
Generalizations

π_{1} is abelian

- C has genus ≥ 2

Topology of Curves

Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...their fundamental groups come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic π_{1} is trivial

Shafarevich's Conjecture

The Proof
Generalizations

- C has genus $\geq 2 \quad \pi_{1}$ is non-commutative

Arithmetic of Curves

Shafarevich
Conjecture
Sándor Kovács

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- Smooth curves C come in three types, and...
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Arithmetic of Curves

Shafarevich

 Conjecture
Curves

Riemann Surfaces Genus

Topology, Arithmetic and Differential Geometry

- ...rational points on them come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Arithmetic of Curves

Shafarevich

 Conjecture
Curves

Riemann Surfaces Genus

Topology, Arithmetic and Differential Geometry

- ...rational points on them come in three types:
- $C \simeq \mathbb{P}^{1}$
lots
- C is a plane cubic
- C has genus ≥ 2

Arithmetic of Curves

Shafarevich Conjecture

Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...rational points on them come in three types:
- $C \simeq \mathbb{P}^{1}$ non-finitely generated

Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
- C has genus ≥ 2

Arithmetic of Curves

Shafarevich Conjecture

Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...rational points on them come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic non-finitely generated

Families
Shafarevich's Conjecture

The Proof
Generalizations
finitely generated

- C has genus ≥ 2

Arithmetic of Curves

Shafarevich Conjecture

Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

- ...rational points on them come in three types:
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic non-finitely generated

Shafarevich's Conjecture

The Proof
Generalizations
finitely generated

- C has genus ≥ 2
finite

Differential Geometry of Curves

- Smooth curves C come in three types, and...
- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry
...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Shafarevich's Conjecture

The Proof
Generalizations

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry
...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
positively curved

Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
- C has genus ≥ 2

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry
...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
positively curved
Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
flat
- C has genus ≥ 2

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
positively curved
- C is a plane cubic
- C has genus ≥ 2
negatively curved

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry
...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
parabolic
Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
- C has genus ≥ 2

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
- C is a plane cubic
- C has genus ≥ 2

Families

Shafarevich's Conjecture

The Proof
Generalizations
elliptic

Differential Geometry of Curves

Curves
Riemann Surfaces Genus
Topology, Arithmetic and Differential Geometry

...their curvatures come in three types:

- $C \simeq \mathbb{P}^{1}$
parabolic

Shafarevich's Conjecture

The Proof
Generalizations

- C is a plane cubic
- C has genus ≥ 2
elliptic
hyperbolic

Outline

Shafarevich

Conjecture
Sándor Kovács

Curves
Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's
Conjecture
The Proof
(2) Families

- Examples and Definitions
- Isotrivial and Non-isotrivial Families

A family of curves of general type

Curves
Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's Conjecture

The Proof
Generalizations

A family of curves of general type

Curves
Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's

 ConjectureThe Proof
Generalizations

A family of curves of general type

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's

 ConjectureThe Proof
Generalizations

A family of curves of general type

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's

 ConjectureThe Proof
Generalizations

A family of curves of general type

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's

 ConjectureThe Proof
Generalizations

A family of curves of general type

Curves
Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's

 ConjectureThe Proof
Generalizations

A family of curves of general type

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's Conjecture

The Proof
Generalizations

$$
\begin{aligned}
\mathbb{A}_{x, y}^{2} \supseteq X_{\lambda}=\pi^{-1}(\lambda) \subseteq & X \\
& \left.\right|^{\downarrow} \\
\lambda & \in \mathbb{A}_{\lambda}^{1}
\end{aligned}
$$

Notation

Shafarevich Conjecture

- B - smooth projective curve of genus g, $\Delta \subseteq B$ - finite set of points.

Curves
Families
Examples and Definitions
Isotrivial and Non-isotrivial
Shafarevich's
Conjecture
The Proof
Generalizations

Notation

Notation

Shafarevich Conjecture

- B - smooth projective curve of genus g, $\Delta \subseteq B$ - finite set of points.

- A family over $B \backslash \Delta, f: X \rightarrow B \backslash \Delta$, is a surjective (flat) map with equidimensional, connected fibers.

Notation

- B - smooth projective curve of genus g, $\Delta \subseteq B$ - finite set of points.

Curves

Families

Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's Conjecture

The Proof
Generalizations

- A family over $B \backslash \Delta, f: X \rightarrow B \backslash \Delta$, is a surjective (flat) map with equidimensional, connected fibers.
- A family is smooth if $X_{b}=f^{-1}(b)$ is smooth for $\forall b \in B$.

Outline

Shafarevich

Conjecture
Sándor Kovács
Curves
Families
Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's
Conjecture
The Proof
(2) Families

- Examples and Definitions
- Isotrivial and Non-isotrivial Families

Curves
 Families

Examples and Definitions
Isotrivial and Non-isotrivial
Shafarevich's
Conjecture
The Proof
Generalizations

Family

Curves
 Families

Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's Conjecture

The Proof
Generalizations

All smooth fibers are isomorphic to \mathbb{P}^{1}.

Isotrivial Family

Shafarevich Conjecture

Curves
 Families

Examples and Definitions Isotrivial and Non-isotrivial

Shafarevich's Conjecture

The Proof
Generalizations

All smooth fibers are isomorphic to \mathbb{P}^{1}.

Non-isotrivial families

- The family defined by $y^{2}=x^{5}-5 \lambda x+4 \lambda$ is not isotrivial, because

$$
X_{\lambda_{1}} \not 千 X_{\lambda_{2}}
$$

for $\lambda_{1} \neq \lambda_{2}$.

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial
Shafarevich's Conjecture

The Proof
Generalizations

Non-isotrivial families

- The family defined by $y^{2}=x^{5}-5 \lambda x+4 \lambda$ is not isotrivial, because

$$
X_{\lambda_{1}} \not 千 X_{\lambda_{2}}
$$

for $\lambda_{1} \neq \lambda_{2}$.

- A family $f: X \rightarrow B$ is isotrivial if there exists a finite set $\Delta \subset B$ such that $X_{b} \simeq X_{b^{\prime}}$ for all $b, b^{\prime} \in B \backslash \Delta$.

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Non-isotrivial families

- The family defined by $y^{2}=x^{5}-5 \lambda x+4 \lambda$ is not isotrivial, because

$$
X_{\lambda_{1}} \not 千 X_{\lambda_{2}}
$$

for $\lambda_{1} \neq \lambda_{2}$.

- A family $f: X \rightarrow B$ is isotrivial if there exists a finite set $\Delta \subset B$ such that $X_{b} \simeq X_{b^{\prime}}$ for all $b, b^{\prime} \in B \backslash \Delta$.

Warm-Up Question: Let $q \in \mathbb{Z}$. How many isotrivial families of curves of genus q over B are there?

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Non-isotrivial families

- The family defined by $y^{2}=x^{5}-5 \lambda x+4 \lambda$ is not isotrivial, because

$$
X_{\lambda_{1}} \not 千 X_{\lambda_{2}}
$$

for $\lambda_{1} \neq \lambda_{2}$.

- A family $f: X \rightarrow B$ is isotrivial if there exists a finite set $\Delta \subset B$ such that $X_{b} \simeq X_{b^{\prime}}$ for all $b, b^{\prime} \in B \backslash \Delta$.

Warm-Up Question: Let $q \in \mathbb{Z}$. How many isotrivial families of curves of genus q over B are there? ∞

Curves

Families
Examples and Definitions Isotrivial and Non-isotrivial

Outline

Shafarevich

Conjecture
Sándor Kovács
Curves
Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
(3) Shafarevich's Conjecture

- Statement and Definitions
- Results and Connections

Shafarevich's Conjecture (1962)

Shafarevich

 ConjectureSándor Kovács

Curves
 Families

Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Shafarevich's Conjecture (1962)

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations

Shafarevich's Conjecture (1962)

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections

Shafarevich's Conjecture (1962)

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations
(II) If

$$
2 g(B)-2+\# \Delta \leq 0
$$

then there aren't any admissible families.

Shafarevich's Conjecture (1962)

Curves

Families
Shafarevich's
(II) If

$$
2 g(B)-2+\# \Delta \leq 0
$$

then there aren't any admissible families.

- Note:

$$
2 g(B)-2+\# \Delta \leq 0 \Leftrightarrow\left\{\begin{array}{llr}
g(B)=0 & \& & \# \Delta \leq 2 \\
g(B)=1 & \& & \Delta=\emptyset
\end{array}\right.
$$

Hyperbolicity

Sándor Kovács

Curves
Families

- A complex analytic space X is Brody hyperbolic if every $\mathbb{C} \rightarrow X$ holomorphic map is constant.

Shafarevich's

Conjecture
Statements
Results and Connections

Hyperbolicity

Sándor Kovács

Curves
Families

- A complex analytic space X is Brody hyperbolic if every $\mathbb{C} \rightarrow X$ holomorphic map is constant.
- X Brody hyperbolic implies that

Hyperbolicity

Shafarevich Conjecture

Sándor Kovács

Curves

Families

- A complex analytic space X is Brody hyperbolic if every $\mathbb{C} \rightarrow X$ holomorphic map is constant.
- X Brody hyperbolic implies that
- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,

Shafarevich's Conjecture

Hyperbolicity

 ConjectureSándor Kovács

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections

- X Brody hyperbolic implies that
- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,
- $\forall T \rightarrow X$ holomorphic map is constant, for any complex torus $T=\mathbb{C}^{n} / \mathbb{Z}^{2 n}$.

Hyperbolicity

Sándor Kovács

Curves
Families
Shafarevich's Conjecture
Statements
Results and Connections

- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,
- $\forall T \rightarrow X$ holomorphic map is constant, for any complex torus $T=\mathbb{C}^{n} / \mathbb{Z}^{2 n}$.

Hyperbolicity

Curves

- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,
- $\forall T \rightarrow X$ holomorphic map is constant, for any complex torus $T=\mathbb{C}^{n} / \mathbb{Z}^{2 n}$.
- An algebraic variety X is algebraically hyperbolic if

Hyperbolicity

Curves

- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,
- $\forall T \rightarrow X$ holomorphic map is constant, for any complex torus $T=\mathbb{C}^{n} / \mathbb{Z}^{2 n}$.
- An algebraic variety X is algebraically hyperbolic if
- $\forall \mathbb{A}^{1} \backslash\{0\} \rightarrow X$ regular map is constant

Hyperbolicity

Curves

- $\forall \mathbb{C}^{*} \rightarrow X$ holomorphic map is constant,
- $\forall T \rightarrow X$ holomorphic map is constant, for any complex torus $T=\mathbb{C}^{n} / \mathbb{Z}^{2 n}$.
- An algebraic variety X is algebraically hyperbolic if
- $\forall \mathbb{A}^{1} \backslash\{0\} \rightarrow X$ regular map is constant, and
- $\forall A \rightarrow X$ regular map is constant, for any abelian variety (projective algebraic group) A.

Hyperbolicity: Examples

Shafarevich
Conjecture
Sándor Kovács
Curves
Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Hyperbolicity: Examples

Shafarevich Conjecture

Sándor Kovács

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Hyperbolicity: Examples

Sándor Kovács

Curves

Families

- $B-$ smooth projective curve,
$\Delta \subseteq B$ - finite subset.
- If $g(B) \geq 2$, then
$B \backslash \Delta$ is hyperbolic for arbitrary Δ.
- If $g(B)=1$, then
$B \backslash \Delta$ is hyperbolic $\Leftrightarrow \Delta \neq \emptyset$.

Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Hyperbolicity: Examples

Shafarevich

 Conjecture
Sándor Kovács

Curves

Families

- B - smooth projective curve,
$\Delta \subseteq B$ - finite subset.
- If $g(B) \geq 2$, then
$B \backslash \Delta$ is hyperbolic for arbitrary Δ.
- If $g(B)=1$, then
$B \backslash \Delta$ is hyperbolic $\Leftrightarrow \Delta \neq \emptyset$.
- If $g(B)=0$, then
$B \backslash \Delta$ is hyperbolic $\Leftrightarrow \# \Delta \geq 3$.

Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Hyperbolicity: Examples

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections

- If $g(B)=1$, then $B \backslash \Delta$ is hyperbolic $\Leftrightarrow \Delta \neq \emptyset$.
- If $g(B)=0$, then
$B \backslash \Delta$ is hyperbolic $\Leftrightarrow \# \Delta \geq 3$.
- $B \backslash \Delta$ is hyperbolic $\Leftrightarrow 2 g(B)-2+\# \Delta>0$.

Shafarevich's Conjecture: Take Two

Shafarevich

 ConjectureSándor Kovács

Curves
Families

Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

Shafarevich's Conjecture: Take Two

 ConjectureSándor Kovács

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections

Shafarevich's Conjecture: Take Two

 ConjectureSándor Kovács

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections

Shafarevich's Conjecture: Take Two

(II) If

$$
2 g(B)-2+\# \Delta \leq 0,
$$

then there aren't any admissible families.

Shafarevich's Conjecture: Take Two

Curves

Families
Shafarevich's
(II) If

$$
2 g(B)-2+\# \Delta \leq 0,
$$

then there aren't any admissible families.
(II*) If there exists any admissible families, then $B \backslash \Delta$ is hyperbolic.

Outline

Shafarevich

Conjecture
Sándor Kovács
Curves
Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
(3) Shafarevich's Conjecture

- Statement and Definitions
- Results and Connections

History

Curves
Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations

History

Sándor Kovács

Curves
Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations

History

Sándor Kovács

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations

History

Curves

Families
Shafarevich's

- Mordell Conjecture (1922):
F - a number field (a finite extension field of \mathbb{Q}),
C - a smooth projective curve of genus ≥ 2 defined over F.

History

Curves

Families
Shafarevich's

- Mordell Conjecture (1922):
F - a number field (a finite extension field of \mathbb{Q}),
C - a smooth projective curve of genus ≥ 2 defined over F.
Then C has only finitely many F-rational points.

History

Curves

Families
Shafarevich's

- Mordell Conjecture (1922):
F - a number field (a finite extension field of \mathbb{Q}),
C - a smooth projective curve of genus ≥ 2 defined over F.
Then C has only finitely many F-rational points. This was proved by FALTINGS (1983).

History

Curves
Families
Shafarevich's

Statements
Results and Connections
The Proof
Generalizations

- Mordell Conjecture (1922):
F - a number field (a finite extension field of \mathbb{Q}),
C - a smooth projective curve of genus ≥ 2 defined over F.
Then C has only finitely many F-rational points. This was proved by FALTINGS (1983).
- The Shafarevich Conjecture has a number field version as well.

Geometric Mordell Conjecture

Curves

Families
Shafarevich's Conjecture
Statements
Results and Connections
The Proof
Generalizations

Geometric Mordell Conjecture

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

- This was proved by MANIN (1963).

Geometric Mordell Conjecture

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

- This was proved by Manin (1963).

And again by Parshin (1968).

Geometric Mordell Conjecture

Curves

Families
Shafarevich's
Conjecture
Statements
Results and Connections
The Proof
Generalizations

- This was proved by Manin (1963).

And again by Parshin (1968) using
"Parshin's Covering Trick" to prove that The Shafarevich Conjecture implies
The Mordell Conjecture.

Outline

Shafarevich

Conjecture
Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Deformation Theory
Arakelov-Parshin method
4) The Proof of Shafarevich's Conjecture

- Deformation Theory
- The Arakelov-Parshin method

Deformations

Curves

Families
Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method
Generalizations

Deformations

- A deformation of an algebraic variety X is a family $F: \mathfrak{X} \rightarrow T$ such that there exists a $t \in T$ that $X \simeq \mathfrak{X}_{t}$.

Curves

Families
Shafarevich's Conjecture

The Proof

Deformation Type

- Two algebraic varieties X_{1} and X_{2} have the same deformation type if there exists a family $F: \mathfrak{X} \rightarrow T, t_{1}, t_{2} \in T$ such that $X_{1} \simeq \mathfrak{X}_{t_{1}}$ and $X_{2} \simeq \mathfrak{X}_{t_{2}}$.

Curves

Families
Shafarevich's Conjecture

The Proof

Deformation Theory
Arakelov-Parshin method
Generalizations

Deformation Type

- Two algebraic varieties X_{1} and X_{2} have the same deformation type if there exists a family $F: \mathfrak{X} \rightarrow T, t_{1}, t_{2} \in T$ such that $X_{1} \simeq \mathfrak{X}_{t_{1}}$ and $X_{2} \simeq \mathfrak{X}_{t_{2}}$.

Deformations of Families

Curves

Families
Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method

Deformations of Families

- A deformation of a family $X \rightarrow B$ is a family $F: \mathfrak{X} \rightarrow B \times T$ such that there exists a $t \in T$ that $(X \rightarrow B) \simeq\left(\mathfrak{X}_{t} \rightarrow B \times\{t\}\right)$, where $\mathfrak{X}_{t}=F^{-1}(B \times\{t\})$.

Curves

Families
Shafarevich's Conjecture
The Proof
Deformation Theory
Arakelov-Parshin method

Deformation Type of Families

Shafarevich Conjecture

Sándor Kovács

- Two families $X_{1} \rightarrow B$ and $X_{2} \rightarrow B$ have the same deformation type if there exists a family $F: \mathfrak{X} \rightarrow B \times T, t_{1}, t_{2} \in T$ such that $\left(X_{1} \rightarrow B\right) \simeq\left(\mathfrak{X}_{t_{1}} \rightarrow B \times\{t\}\right)$ and $\left(X_{2} \rightarrow B\right) \simeq\left(\mathfrak{X}_{t_{2}} \rightarrow B \times\{t\}\right)$.

Curves

Families

Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method
Generalizations

Deformation Type of Families

Shafarevich Conjecture

Sándor Kovács

- Two families $X_{1} \rightarrow B$ and $X_{2} \rightarrow B$ have the same deformation type if there exists a family $F: \mathfrak{X} \rightarrow B \times T, t_{1}, t_{2} \in T$ such that $\left(X_{1} \rightarrow B\right) \simeq\left(\mathfrak{X}_{t_{1}} \rightarrow B \times\{t\}\right)$ and $\left(X_{2} \rightarrow B\right) \simeq\left(\mathfrak{X}_{t_{2}} \rightarrow B \times\{t\}\right)$.

Curves
Families
Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method

Outline

Shafarevich

Conjecture
Sándor Kovács
Curves
Families
Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method
(4) The Proof of Shafarevich's Conjecture

- Deformation Theory
- The Arakelov-Parshin method

The Arakelov-Parshin method

Curves
Families
Shafarevich's Conjecture

The Proof
Deformation Theory
Arakelov-Parshin method
Generalizations

The Arakelov-Parshin method

- Arakelov and Parshin reformulated the Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many deformation types of admissible families.

The Arakelov-Parshin method

Curves
Families
Shafarevich's
Conjecture
The Proof
Deformation Theory
Arakelov-Parshin method
Generalizations

The Arakelov-Parshin method

Curves

Families
Shafarevich's
Conjecture
The Proof
Deformation Theory
Arakelov-Parshin method

- Note:
- (B) and (R) together imply (I).

The Arakelov-Parshin method

- Arakelov and Parshin reformulated the Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many deformation types of admissible families.
(R) Rigidity: Admissible families do not admit non-trivial deformations.
(H) Hyperbolicity: If there exist admissible families, then $B \backslash \Delta$ is hyperbolic.
- Note:
- (B) and (R) together imply (I).

The Arakelov-Parshin method

- Arakelov and Parshin reformulated the Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many deformation types of admissible families.
(R) Rigidity: Admissible families do not admit non-trivial deformations.
(H) Hyperbolicity: If there exist admissible families, then $B \backslash \Delta$ is hyperbolic.
- Note:
- (B) and (R) together imply (I).
- $(\mathrm{H})=\left(\mathrm{I}{ }^{*}\right)$ and hence is equivalent to (II).

Curves

Families
Shafarevich's
Conjecture
The Proof
Deformation Theory

Outline

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers

- Kodaira Dimension
- Admissible Families
- Weak Boundedness
- Recent Results
- Higher Dimensional Bases
- Rigidity

Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Higher dimensional fibers

Higher dimensional fibers

Higher dimensional fibers

Shafarevich Conjecture

Higher dimensional fibers

Shafarevich Conjecture

Shafarevich's Conjecture

The Proof

Generalizations

Higher Dimensional Fibers

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Higher dimensional fibers

Shafarevich
Conjecture

Shafarevich's Conjecture

Outline

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers

- Kodaira Dimension
- Admissible Families
- Weak Boundedness
- Recent Results
- Higher Dimensional Bases
- Rigidity

Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

Kodaira dimension

Shafarevich Conjecture

Kodaira dimension

Shafarevich Conjecture
degree

$$
\operatorname{deg}=1,2
$$

elliptic

genus

$$
g=0
$$

$g=0$

$$
\kappa=-\infty
$$

$g=1$
$\kappa=0$

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

- Plane curves:
type
\mathbb{P}^{1}
elliptic
general $\quad \operatorname{deg} \geq 4$
$g \geq 2$
$\kappa=1$
type

$$
\operatorname{deg}=1,2
$$

$g=0$
$\kappa=-\infty$
$\operatorname{deg}=3$
$g=1$
$\kappa=0$
degree

Curves

Families
Shafarevich's Conjecture
genus dimension

Admissible Families
Weak Boundedness
Recent Results

$$
\operatorname{deg}=3
$$

$$
g=1
$$

Higher Dimensional Bases

$$
\kappa=0
$$ Rigidity

Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type
degree

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type

degree

$$
\operatorname{deg}<n+1 \quad \kappa=-\infty
$$

Curves
Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type

$$
\begin{array}{ll}
\text { degree } & \text { dimensior } \\
\operatorname{deg}<n+1 & \kappa=-\infty \\
\operatorname{deg}=n+1 & \kappa=0
\end{array}
$$

Curves
Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type

degree

deg $<n+1$
$\operatorname{deg}=n+1 \quad \kappa=0$
$\operatorname{deg}>n+1 \quad \kappa=\operatorname{dim}$
$\kappa=-\infty$

Kodaira dimension

Curves
Families
Shafarevich's Conjecture

The Proof

Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type
degree
Fano
deg $<n+1$
$\operatorname{deg}=n+1 \quad \kappa=0$
$\operatorname{deg}>n+1 \quad \kappa=\operatorname{dim}$
$\kappa=-\infty$

Kodaira dimension

Curves
Families
Shafarevich's Conjecture

The Proof

Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type
Fano
Calabi-Yau
$\operatorname{deg}=n+1$
deg $>n+1$
$\kappa=\operatorname{dim}$

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

- Hypersurfaces in \mathbb{P}^{n} :
type
Fano
Calabi-Yau
general type
degree
deg $<n+1$
$\kappa=-\infty$
$\operatorname{deg}=n+1 \quad \kappa=0$
$\operatorname{deg}>n+1 \quad \kappa=\operatorname{dim}$

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Kodaira dimension

Shafarevich Conjecture

- Hypersurfaces in \mathbb{P}^{n} :
type
Fano
Calabi-Yau \quad deg $=n+1 \quad \kappa=0$
general type $\quad \operatorname{deg}>n+1 \quad k=\operatorname{dim}$
$\operatorname{deg}<n+1$
$\kappa=-\infty$

Kodaira

 dimensiondegree

Curves
Families
Shafarevich's
Conjecture
The Proof

Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

- Products:

$$
\begin{aligned}
\operatorname{dim}(X \times Y) & =\operatorname{dim} X+\operatorname{dim} Y \\
\kappa(X \times Y) & =\kappa(X)+\kappa(Y)
\end{aligned}
$$

Outline

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Varieties of General Type

Shafarevich Conjecture

Varieties of General Type

Shafarevich Conjecture

Sándor Kovács

Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Varieties of General Type

Shafarevich Conjecture

Sándor Kovács

Curves
 Families
 Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Varieties of General Type

Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture

- Setup: Fix B a smooth projective curve, $\Delta \subseteq B$ a finite subset, and h a polynomial.

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Sándor Kovács

Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Sándor Kovács

Curves

Families
Shafarevich's Conjecture

The Proof

Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

The Shafarevich Conjecture

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

- "Canonically embedded" means that it is embedded by the global sections of $\omega_{x_{b}}^{m}$. In particular, X_{b} is of general type.

Outline

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity

- Recent Results

Where Next?

Shafarevich Conjecture

Shafarevich
Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Shafarevich Conjecture

Sándor Kovács

Curves
Families

(B) Boundedness: There are only finitely many deformation types of admissible families.

Shafarevich's Conjecture

The Proof

Generalizations

Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Shafarevich Conjecture

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Shafarevich Conjecture

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Shafarevich Conjecture

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?
(WB) Weak Boundedness:
If $f: X \rightarrow B$ is an admissible family, then $\operatorname{deg} f_{*} \omega_{X / B}^{m}$ is bounded in terms of B, Δ, h, m.

Weak Boundedness

Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Weak Boundedness

Shafarevich Conjecture

Weak Boundedness

Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Weak Boundedness

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Weak Boundedness

Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?
(WB) Weak Boundedness:
If $f: X \rightarrow B$ is an admissible family, then deg $f_{*} \omega_{X / B}^{m}$ is bounded in terms of B, Δ, h, m.

Outline

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity

- Recent Results
- Higher Dimensional Bases
- Rigidity

Where Next?

Modern History

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Modern History

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Modern History

Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

Modern History: Hyperbolicity

Modern History: Hyperbolicity

- Beauville (1981): (H) holds for $\operatorname{dim}(X / B)=1$.

Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Modern History: Hyperbolicity

Curves

Families

- Beauville (1981): (H) holds for $\operatorname{dim}(X / B)=1$.
- Catanese-Schneider (1994): (H) can be used for giving upper bounds on the size of automorphisms groups of varieties of general type.

Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Modern History: Hyperbolicity

Curves

Families

- Beauville (1981): (H) holds for $\operatorname{dim}(X / B)=1$.
- Catanese-Schneider (1994): (H) can be used for giving upper bounds on the size of automorphisms groups of varieties of general type.
- Shokurov (1995):
(H) can be used to prove quasi-projectivity of moduli spaces of varieties of general type.

Modern History: Hyperbolicity

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

Modern History: Hyperbolicity

Shafarevich

 Conjecture```
Curves
Families
Shafarevich's Conjecture
```

- Migliorini (1995): $(H)$ holds for $\operatorname{dim}(X / B)=2$ and $g(B)=1$.
- K_(1996):
$(H)$ holds for $\operatorname{dim}(X / B)$ arbitrary and $g(B)=1$.

The Proof

## Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Modern History: Hyperbolicity

 Conjecture
## Sándor Kovács

## Curves

Families
Shafarevich's Conjecture

The Proof

## Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Modern History: Hyperbolicity

 Conjecture
## Sándor Kovács

## Curves

## Families

- Migliorini (1995):
$(H)$ holds for $\operatorname{dim}(X / B)=2$ and $g(B)=1$.
- K_ (1996):
$(H)$ holds for $\operatorname{dim}(X / B)$ arbitrary and $g(B)=1$.
- K_ (1997):
$(H)$ holds for $\operatorname{dim}(X / B)=2$.
- K___ (2000):
(H) holds for $\operatorname{dim}(X / B)$ arbitrary.


## Modern History: Hyperbolicity

## Curves

Families
Shafarevich's Conjecture

The Proof

## Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

- K___ (2000):
(H) holds for $\operatorname{dim}(X / B)$ arbitrary.
- Viehweg and Zuo (2002):

Brody hyperbolicity holds as well.

# Modern History: (Weak) Boundedness 

Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Modern History: (Weak) Boundedness

Shafarevich Conjecture

Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Modern History: (Weak) Boundedness

Shafarevich Conjecture

## Sándor Kovács

## Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Modern History: (Weak) Boundedness

- (WB) holds for $\operatorname{dim}(X / B)$ arbitrary.

As a byproduct of their proof they also obtained that (H) holds in these cases.

## Modern History: <br> (Weak) Boundedness

- (WB) holds for $\operatorname{dim}(X / B)$ arbitrary.

As a byproduct of their proof they also obtained that (H) holds in these cases.

- K__ (2002), Viehweg and Zuo (2002): (WB) holds under more general assumptions.


## Modern History: <br> (Weak) Boundedness

- (WB) holds for $\operatorname{dim}(X / B)$ arbitrary.

As a byproduct of their proof they also obtained that (H) holds in these cases.

- K__ (2002), Viehweg and Zuo (2002): (WB) holds under more general assumptions.
- K__ (2002):
(WB) implies (H).

Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## More History

- ...more related results by


## More History

- ...more related results by
- FALTINGS (1983)


## More History

- ...more related results by
- FALTINGS (1983)
- ZHANG (1997)


## Generalizations

Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## More History

- ...more related results by
- FALTINGS (1983)
- ZHANG (1997)
- Oguiso and Viehweg (2001)


## Generalizations

Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## More History

- ...more related results by
- FALTINGS (1983)
- ZHANG (1997)
- Oguiso and Viehweg (2001)
- ..and more.


## Generalizations

Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Outline

## Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

## Many details change:

Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

Shafarevich Conjecture

Sándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

## Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers

- A family being non-isotrivial is no longer a good assumption.


## Higher dimensional bases

## Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

## Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

- Viehweg's Conjecture (2001): If there exists an admissible family with maximal variation in moduli, then $(B, \Delta)$ is of log general type.


## Higher dimensional bases

## Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

- Viehweg's Conjecture (2001): If there exists an admissible family with maximal variation in moduli, then $(B, \Delta)$ is of log general type. That is, the $\log$-Kodaira dimension of $B$ is maximal: $\kappa(B, \Delta)=\operatorname{dim} B$.


## Higher dimensional bases

- Viehweg's Conjecture (2001): If there exists an admissible family with maximal variation in moduli, then $(B, \Delta)$ is of log general type.

Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Higher dimensional bases

## Curves

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

- K (1997):

If $f: X \rightarrow B$ is admissible and $B$ is an abelian variety, then $\Delta \neq \emptyset$.

## Rigidity

## Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations

## But, what about Rigidity?

# Higher Dimensional Fibers 

 Kodaira DimensionAdmissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Outline

## Shafarevich

 ConjectureSándor Kovács

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

Curves
Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

- Let $Y \rightarrow B$ be an arbitrary non-isotrivial family of curves of genus $\geq 2$, and

Curves<br>Families<br>Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

Sándor Kovács

- Let $Y \rightarrow B$ be an arbitrary non-isotrivial family of curves of genus $\geq 2$, and
- $C$ a smooth projective curve of genus $\geq 2$.


## Curves <br> Families <br> Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

Shafarevich Conjecture

- Let $Y \rightarrow B$ be an arbitrary non-isotrivial family of curves of genus $\geq 2$, and
- $C$ a smooth projective curve of genus $\geq 2$.



## Curves

Families
Shafarevich's Conjecture

The Proof

## Generalizations

Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

Shafarevich Conjecture

## Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity - An Example

Shafarevich Conjecture

## Sándor Kovács

- $f: X=Y \times C \rightarrow B$ is an admissible family, and
- any deformation of $C$ gives a deformation of $f$.



## Curves

Families
Shafarevich's Conjecture

The Proof

## Generalizations

Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Shafarevich <br> Conjecture

Sándor Kovács

Curves

- Therefore, (R) fails.

Families
Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Shafarevich

Conjecture

Sándor Kovács

## Curves

- Therefore, (R) fails.
- Question: Under what additional conditions does (R) hold?

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity

## Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Rigidity

## Curves

Families
Shafarevich's Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

[^0]
## Current Work

- Work in progress:

Shafarevich's
Conjecture
The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension

Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity
Where Next?

## Current Work

- Work in progress:
- Geometric description of strongly non-isotrivial families.


## Conjecture

The Proof
Generalizations
Higher Dimensional Fibers Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases Rigidity
Where Next?

## Current Work

- Work in progress:
- Geometric description of strongly non-isotrivial families.
- Joint work with Stefan Kebekus (Köln): Families over two-dimensional bases.


## Acknowledgement

Sándor Kovács

Curves
Families
Shafarevich's Conjecture

The Proof
Generalizations
This presentation was made using the beamertex LATEX macropackage of Till Tantau. http://latex-beamer.sourceforge.net


[^0]:    ${ }^{1}$ unfortunately the margin is not wide enough to define this term.

