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∀b ∈ B.
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finite set ∆ ⊂ B such that Xb ' Xb′ for all
b, b′ ∈ B \ ∆.
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Shafarevich’s Conjecture (1962)

Fix B, ∆ as before, q ∈ Z, q ≥ 2. Then

(I) there exists only finitely many non-isotrivial
smooth families of curves of genus q over B \ ∆.

(II) If
2g(B) − 2 + #∆ ≤ 0,

then there aren’t any admissible families.
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Shafarevich’s Conjecture (1962)

Fix B, ∆ as before, q ∈ Z, q ≥ 2. Then

(I) there exists only finitely many non-isotrivial
smooth families of curves of genus q over B \ ∆.
These will be called “admissible families”.

(II) If
2g(B) − 2 + #∆ ≤ 0,

then there aren’t any admissible families.

Note:

2g(B) − 2 + #∆ ≤ 0 ⇔

{

g(B) = 0 & #∆ ≤ 2
g(B) = 1 & ∆ = ∅
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A complex analytic space X is Brody hyperbolic
if every C → X holomorphic map is constant.
X Brody hyperbolic implies that

• ∀ C∗ → X holomorphic map is constant,
• ∀ T → X holomorphic map is constant, for any

complex torus T = Cn/Z2n.
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if every C → X holomorphic map is constant.
X Brody hyperbolic is equivalent to

• ∀ C∗ → X holomorphic map is constant,
• ∀ T → X holomorphic map is constant, for any

complex torus T = Cn/Z2n.

An algebraic variety X is algebraically
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• ∀ A1 \ {0} → X regular map is constant, and
• ∀ A → X regular map is constant, for any

abelian variety (projective algebraic group) A.
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Hyperbolicity: Examples

B – smooth projective curve,
∆ ⊆ B – finite subset.

• If g(B) ≥ 2, then
B \ ∆ is hyperbolic for arbitrary ∆.

• If g(B) = 1, then
B \ ∆ is hyperbolic ⇔ ∆ 6= ∅.

• If g(B) = 0, then
B \ ∆ is hyperbolic ⇔ #∆ ≥ 3.

B \ ∆ is hyperbolic ⇔ 2g(B) − 2 + #∆ > 0.
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Shafarevich’s Conjecture: Take Two

Fix B, ∆ as before, q ∈ Z, q ≥ 2. Then

(I) there exists only finitely many non-isotrivial
smooth families of curves of genus q over
B \ ∆. “admissible families”.

(II) If
2g(B) − 2 + #∆ ≤ 0,

then there aren’t any admissible families.

(II∗) If there exists any admissible families, then
B \ ∆ is hyperbolic.
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History

The Shafarevich Conjecture was confirmed by
PARSHIN (1968) for ∆ = ∅, and by
ARAKELOV (1971) in general.
INTERMEZZO: The number field case.

• Mordell Conjecture (1922):
F – a number field (a finite extension field of Q),
C – a smooth projective curve of genus ≥ 2

defined over F .
Then C has only finitely many F -rational points.
This was proved by FALTINGS (1983).

• The Shafarevich Conjecture has a number field
version as well.
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Geometric Mordell Conjecture

Let f : X → B be a non-isotrivial family of
projective curves of genus ≥ 2.
Then there are only finitely many sections of f ,
i.e., σ : B → X , such that f ◦ σ = idB.

This was proved by MANIN (1963).

And again by PARSHIN using

“Parshin’s Covering Trick” to prove that

The Shafarevich Conjecture
implies

The Mordell Conjecture.
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4 The Proof of Shafarevich’s Conjecture
Deformation Theory
The Arakelov-Parshin method
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A deformation of an algebraic variety X is a
family F : X → T such that there exists a t ∈ T
that X ' Xt .
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Two algebraic varieties X1 and X2 have the
same deformation type if there exists a family
F : X → T , t1, t2 ∈ T such that X1 ' Xt1 and
X2 ' Xt2 .
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A deformation of a family X → B is a family
F : X → B × T such that there exists a t ∈ T
that (X → B) ' (Xt → B × {t}), where
Xt = F−1(B × {t}).
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F : X → B × T , t1, t2 ∈ T such that
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The Arakelov-Parshin method

ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
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(B) Boundedness: There are only finitely many

deformation types of admissible families.
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ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many

deformation types of admissible families.
(R) Rigidity: Admissible families do not admit

non-trivial deformations.
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deformation types of admissible families.
(R) Rigidity: Admissible families do not admit

non-trivial deformations.

Note:
• (B) and (R) together imply (I).
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deformation types of admissible families.
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(H) Hyperbolicity: If there exist admissible families,

then B \ ∆ is hyperbolic.
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• (B) and (R) together imply (I).
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The Arakelov-Parshin method

ARAKELOV and PARSHIN reformulated the
Shafarevich conjecture the following way:
(B) Boundedness: There are only finitely many

deformation types of admissible families.
(R) Rigidity: Admissible families do not admit

non-trivial deformations.
(H) Hyperbolicity: If there exist admissible families,

then B \ ∆ is hyperbolic.

Note:
• (B) and (R) together imply (I).
• (H) = (II∗) and hence is equivalent to (II).
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Where Next?

Higher dimensional fibers

First order of business:

Generalize the setup.

Find a replacement for “genus” and “q ≥ 2”.

• Hilbert polynomial, h.
• Kodaira dimension, κ = −∞, 0, 1, . . . , dim.
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Products:

dim(X × Y ) = dim X + dim Y

κ(X × Y ) = κ(X ) + κ(Y )
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Recall: A curve C is of general type iff g(C) ≥ 2.

Genus is replaced with the Hilbert polynomial.
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Genus is replaced with the Hilbert polynomial.

For curves, the Hilbert polynomial is determined
by the genus, so this is a natural generalization.
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The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

The Shafarevich Conjecture

Setup: Fix B a smooth projective curve, ∆ ⊆ B
a finite subset, and h a polynomial.
f : X → B is an admissible family if

• f is non-isotrivial
• for all b ∈ B \ ∆, Xb is a smooth projective

variety, canonically embedded with Hilbert
polynomial h.

“Canonically embedded” means that it is
embedded by the global sections of ωm

Xb
.

In particular, Xb is of general type.



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

Outline

5 Generalizations
Higher Dimensional Fibers
Kodaira Dimension
Admissible Families
Weak Boundedness
Recent Results
Higher Dimensional Bases
Rigidity



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

Shafarevich Conjecture



Shafarevich
Conjecture

Sándor Kovács

Curves

Families

Shafarevich’s
Conjecture

The Proof

Generalizations
Higher Dimensional Fibers

Kodaira Dimension

Admissible Families

Weak Boundedness

Recent Results

Higher Dimensional Bases

Rigidity

Where Next?

Shafarevich Conjecture

(B) Boundedness: There are only finitely many
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Shafarevich Conjecture

(B) Boundedness: There are only finitely many
deformation types of admissible families.

(R) Rigidity: Admissible families do not admit
non-trivial deformations.

(H) Hyperbolicity: If there exist admissible families,
then B \ ∆ is hyperbolic.
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Shafarevich Conjecture

(B) Boundedness: There are only finitely many
deformation types of admissible families.

(R) Rigidity: Admissible families do not admit
non-trivial deformations.

(H) Hyperbolicity: If there exist admissible families,
then B \ ∆ is hyperbolic.

(WB) Weak Boundedness:
If f : X → B is an admissible family, then
deg f∗ωm

X/B is bounded in terms of B, ∆, h, m.
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(K , 2002) (WB) ⇒ (H)

Hence Weak Boundedness is the key statement
towards proving (B) and (H).
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BEAUVILLE (1981):
(H) holds for dim(X/B) = 1.
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(H) holds for dim(X/B) = 1.

CATANESE-SCHNEIDER (1994):
(H) can be used for giving upper bounds on the
size of automorphisms groups of varieties of
general type.
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Modern History: Hyperbolicity

BEAUVILLE (1981):
(H) holds for dim(X/B) = 1.

CATANESE-SCHNEIDER (1994):
(H) can be used for giving upper bounds on the
size of automorphisms groups of varieties of
general type.

SHOKUROV (1995):
(H) can be used to prove quasi-projectivity of
moduli spaces of varieties of general type.
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(H) holds for dim(X/B) = 2 and g(B) = 1.
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K (1996):
(H) holds for dim(X/B) arbitrary and g(B) = 1.
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Modern History: Hyperbolicity

MIGLIORINI (1995):
(H) holds for dim(X/B) = 2 and g(B) = 1.

K (1996):
(H) holds for dim(X/B) arbitrary and g(B) = 1.

K (1997):
(H) holds for dim(X/B) = 2.

K (2000):
(H) holds for dim(X/B) arbitrary.

VIEHWEG AND ZUO (2002):
Brody hyperbolicity holds as well.
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BEDULEV AND VIEHWEG (2000):
• (B) holds for dim(X/B) = 2, and
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BEDULEV AND VIEHWEG (2000):
• (B) holds for dim(X/B) = 2, and
• (WB) holds for dim(X/B) arbitrary.
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Modern History:
(Weak) Boundedness

BEDULEV AND VIEHWEG (2000):
• (B) holds for dim(X/B) = 2, and
• (WB) holds for dim(X/B) arbitrary.

As a byproduct of their proof they also obtained
that (H) holds in these cases.
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Modern History:
(Weak) Boundedness

BEDULEV AND VIEHWEG (2000):
• (B) holds for dim(X/B) = 2, and
• (WB) holds for dim(X/B) arbitrary.

As a byproduct of their proof they also obtained
that (H) holds in these cases.

K (2002), VIEHWEG AND ZUO (2002):
(WB) holds under more general assumptions.
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Modern History:
(Weak) Boundedness

BEDULEV AND VIEHWEG (2000):
• (B) holds for dim(X/B) = 2, and
• (WB) holds for dim(X/B) arbitrary.

As a byproduct of their proof they also obtained
that (H) holds in these cases.

K (2002), VIEHWEG AND ZUO (2002):
(WB) holds under more general assumptions.

K (2002):
(WB) implies (H).
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...more related results by

FALTINGS (1983)

ZHANG (1997)

OGUISO AND VIEHWEG (2001)

..and more.
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Instead of ∆ being a finite subset,
it is a 1-codimensional subvariety of B.
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Many details change:

Instead of ∆ being a finite subset,
it is a 1-codimensional subvariety of B.

A family being non-isotrivial is no longer a good
assumption.
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Higher dimensional bases

Many details change:

Instead of ∆ being a finite subset,
it is a 1-codimensional subvariety of B.

A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
having maximal variation in moduli.
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Higher dimensional bases

Many details change:

Instead of ∆ being a finite subset,
it is a 1-codimensional subvariety of B.

A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
having maximal variation in moduli.

Viehweg’s Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, ∆) is of log general type.
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Higher dimensional bases

Many details change:

Instead of ∆ being a finite subset,
it is a 1-codimensional subvariety of B.

A family being non-isotrivial is no longer a good
assumption. It has to be replaced by a family
having maximal variation in moduli.

Viehweg’s Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, ∆) is of log general type.
That is, the log-Kodaira dimension of B is
maximal: κ(B, ∆) = dim B.
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Viehweg’s Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, ∆) is of log general type.
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Higher dimensional bases

Viehweg’s Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, ∆) is of log general type.

K (2003), VIEHWEG-ZUO, (2003):
Viehweg’s conjecture holds for B = Pn.
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Higher dimensional bases

Viehweg’s Conjecture (2001): If there exists an
admissible family with maximal variation in
moduli, then (B, ∆) is of log general type.

K (2003), VIEHWEG-ZUO, (2003):
Viehweg’s conjecture holds for B = Pn.

K (1997):
If f : X → B is admissible and B is an abelian
variety, then ∆ 6= ∅.
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But, what about Rigidity?
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Rigidity – An Example

Let Y → B be an arbitrary non-isotrivial family
of curves of genus ≥ 2, and

C a smooth projective curve of genus ≥ 2.
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Rigidity – An Example

Let Y → B be an arbitrary non-isotrivial family
of curves of genus ≥ 2, and

C a smooth projective curve of genus ≥ 2.

C

f

B

X Y C= ×

CC

b bX Y C= ×

Y
bY C

b

C
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Rigidity – An Example

f : X = Y × C → B is an admissible family,
and

C

f

B

X Y C= ×

CC

b bX Y C= ×

Y
bY C

b

C
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Rigidity – An Example

f : X = Y × C → B is an admissible family,
and

any deformation of C gives a deformation of f .

C

f

B

X Y C= ×

CC

b bX Y C= ×

Y
bY C

b

C
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does (R) hold?
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Rigidity

Therefore, (R) fails.

Question: Under what additional conditions
does (R) hold?

K (2004), VIEHWEG-ZUO, (2004):
Rigidity holds for strongly non-isotrivial families.
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Rigidity

Therefore, (R) fails.

Question: Under what additional conditions
does (R) hold?

K (2004), VIEHWEG-ZUO, (2004):
Rigidity holds for strongly1non-isotrivial families.

1unfortunately the margin is not wide enough to define

this term.
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Work in progress:

• Geometric description of strongly non-isotrivial
families.
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Current Work

Work in progress:

• Geometric description of strongly non-isotrivial
families.

• Joint work with Stefan Kebekus (Köln):
Families over two-dimensional bases.
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