Singularities

Sándor Kovács

May 1, 2007

First Impressions

First Impressions

Pierre de Fermat (1601-1665)

First Impressions

- Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$ has no solution with a, b, c non-zero integers.

First Impressions

First Impressions

- Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$ has no solution with a, b, c non-zero integers.

- Bolyai: hyperbolic geometry.

First Impressions

Évariste Galois (1811-1832)

First Impressions

- Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$ has no solution with a, b, c non-zero integers.

- Bolyai: hyperbolic geometry.
- Galois: solving equations, group theory, field extensions.

First Impressions

- Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$ has no solution with a, b, c non-zero integers.

- Bolyai: hyperbolic geometry.
- Galois: solving equations, group theory, field extensions.
- Neither Bolyai nor Galois was recognized by their contemporaries.

First Impressions

- Fermat:

$$
a^{n}+b^{n}=c^{n}
$$

for $n \geq 3$ has no solution with a, b, c non-zero integers.

- Bolyai: hyperbolic geometry.
- Galois: solving equations, group theory, field extensions.
- Neither Bolyai nor Galois was recognized by their contemporaries.
- Galois died at a very young age (21).

Puzzles

Puzzles

- A snail has fallen in a well that's 50 feet deep. Every day it climbs up 10 feet, but then it takes a nap and slides back 9 feet. How long does it take for the snail to get out of the well?

Puzzles

- A snail has fallen in a well that's 50 feet deep. Every day it climbs up 10 feet, but then it takes a nap and slides back 9 feet. How long does it take for the snail to get out of the well? 41 days.

Puzzles

- A snail has fallen in a well that's 50 feet deep. Every day it climbs up 10 feet, but then it takes a nap and slides back 9 feet. How long does it take for the snail to get out of the well? 41 days.
- $(15+\sqrt{220})^{2007}=\ldots ? . ? \ldots$

Puzzles

- A snail has fallen in a well that's 50 feet deep. Every day it climbs up 10 feet, but then it takes a nap and slides back 9 feet. How long does it take for the snail to get out of the well? 41 days.
- $(15+\sqrt{220})^{2007}=\ldots 9.9 \ldots$

Puzzles

- A snail has fallen in a well that's 50 feet deep. Every day it climbs up 10 feet, but then it takes a nap and slides back 9 feet. How long does it take for the snail to get out of the well? 41 days.
- $(15+\sqrt{220})^{2007}=\ldots 9.9 \ldots$
- The Japanese kindergarten entry exam...

The Bus Puzzle

The Bus Puzzle

US
 4

A Few Good Hungarians

A Few Good Hungarians

Riesz, Frigyes (1880-1956)

A Few Good Hungarians

Fejér, Lipót (1880-1959)

A Few Good Hungarians

Haar, Alfréd (1885-1933)

A Few Good Hungarians

Neumann, János (1903-1957)

A Few Good Hungarians

A Few Good Hungarians

Erdős, Pál (1913-1996)

A Few Good Hungarians

Bott, Raoul (1923-2005)
...and a few more
...and a few more

...and a few more

Lovász, László (1948 -)
...and a few more

Kollár, János (1956 -)

Mathematical Impressions

Mathematical Impressions

- axiomatic geometry

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)
- commutative algebra

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)
- commutative algebra

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)
- commutative algebra

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)
- commutative algebra

Mathematical Impressions

- axiomatic geometry
- hyperbolic geometry
- projective geometry
- finite geometry
- abstract algebra
- group theory
(finite simple groups)
- commutative algebra

algebraic geometry

First Papers

First Papers

- First paper

First Papers

- First paper \rightarrow took 5 years to get published.

First Papers

- First paper \rightarrow took 5 years to get published.
- Second paper

First Papers

- First paper \rightarrow took 5 years to get published.
- Second paper \rightarrow Erdős\# $=2$

Erdős \＃

Definition

Erdős \#

Definition

- Erdős's Erdős\# = 0,

Erdős \#

Definition

- Erdős's Erdős\# = 0,
- Anyone, who published a research paper with Erdős has Erdős\# = 1,

Erdős \#

Definition

- Erdős's Erdős\# = 0,
- Anyone, who published a research paper with Erdős has Erdős\# = 1,
- Anyone, who published a research paper with someone who has Erdős\# = 1, has Erdős\# = 2, etc.

Erdős \#

Definition

- Erdős's Erdős\# = 0,
- Anyone, who published a research paper with Erdős has Erdős\# = 1,
- Anyone, who published a research paper with someone who has Erdős\# = 1, has Erdős\# = 2, etc.
- Someone's Erdős\# is n if they published a research paper with someone who has Erdős\# $=n-1$, but have not published paper with anyone who has Erdős\# $<n-1$.

Erdős \#

Definition

- Erdős's Erdős\# = 0,
- Anyone, who published a research paper with Erdős has Erdős\# = 1,
- Anyone, who published a research paper with someone who has Erdős\# = 1, has Erdős\# = 2, etc.
- Someone's Erdős\# is n if they published a research paper with someone who has Erdős\# $=n-1$, but have not published paper with anyone who has Erdős\# $<n-1$.

Example

My Erdős\# = 2 .

Thesis

Thesis

"Hey, man, what's your thesis about?"

Thesis

"Well, it has something to do with how the universe is changing through time, and it states that either the universe does not change at all, or there must be times when black holes exist."

Thesis

"Well, it has something to do with how the universe is changing through time, and it states that either the universe does not change at all, or there must be times when black holes exist."
(This is, of course, a very loose and non-rigorous interpretation.)

Thesis

"Well, it has something to do with how the universe is changing through time, and it states that either the universe does not change at all, or there must be times when singularities exist."

Thesis

My thesis through Lun Yi's eyes

Advertisement

Shift hours: Friday \& Saturday 12-5 pm
Or by appointment: info@shiftstudio.org
www.shiftstudio.org
Above: Shafarevich's Conjecture, 2007, charcoal on paper, 35×40 in Front: Study for Invention, 2007
Photo credit: Connie Wellnitz

Conics

Conics

"This may not be your thesis, but this I understand."

Conics

"What are conics, and why are they called "conics"?"

Conics

ellipse

Conics

三 \quad のく

Conics

Conics

Conics

ellipse

Conics

Conics

Conics

Conics

DEFORMATIONS

Conics

deformations

Conics

deformations

Conics

INTERSECTIONS

Conics

intersections

Conics

intersections

Conics

intersections

Cones

SINGULARITIES

Singularities:
 cone

Singularities: 2 lines vs. 1 line

Singularities: deformation

Singularities: ~ 2 lines

Singularities: 2 lines vs. 1 line

Weird

- 1 line through the vertex intersects 2 lines through the vertex in only 1 point.

Weird

- 1 line through the vertex intersects 2 lines through the vertex in only 1 point.
- In how many point does 1 line intersect another (1) line?

Weird

- 1 line through the vertex intersects 2 lines through the vertex in only 1 point.
- In how many point does 1 line intersect another (1) line? $1 / 2$

Non-singular case

Non-singular case

smoothing

Non-singular case 2 lines vs. 1 line

Non-singular case deformation

Non-singular

case

~2 lines

Non-singular case 2 lines vs. 1 line

Research

- Fermat-Wiles:

$$
a^{n}+b^{n}=c^{n} \quad n \geq 3
$$

has no solution with a, b, c non-zero integers.

Research

- Fermat-Wiles:

$$
a^{n}+b^{n}=c^{n} \quad n \geq 3
$$

has no solution with a, b, c non-zero integers.

- Reformulation:

$$
\left(\frac{a}{c}\right)^{n}+\left(\frac{b}{c}\right)^{n}=1 \quad n \geq 3
$$

has no solution with a, b, c non-zero integers.

Research

- Fermat-Wiles:

$$
a^{n}+b^{n}=c^{n} \quad n \geq 3
$$

has no solution with a, b, c non-zero integers.

- Reformulation:

$$
x^{n}+y^{n}=1 \quad n \geq 3
$$

has no solution with x, y non-zero rational numbers.

Research

- Fermat-Wiles:

$$
a^{n}+b^{n}=c^{n} \quad n \geq 3
$$

has no solution with a, b, c non-zero integers.

- Reformulation:

$$
x^{n}+y^{n}=1 \quad n \geq 3
$$

has no solution with x, y non-zero rational numbers.

- Question: If $f(x, y)$ is a polynomial in x, y of degree ≥ 3 with integer coefficients, does

$$
f(x, y)=0
$$

have no solution with x, y non-zero rational numbers?

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

Geometry

The equation $f(x, y)=0$ defines a curve on the plane:

A solution with x, y rational numbers corresponds to a point on the curve with rational coordinates.

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".
- Consider equations with a free parameter t and ask whether there are solutions among "multiples of t ".

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".
- Consider equations with a free parameter t and ask whether there are solutions among "multiples of t ".
- Example: Consider the equation

$$
y^{2}-x^{5}+5 t \quad x-4 t=0
$$

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".
- Consider equations with a free parameter t and ask whether there are solutions among "multiples of t ".
- Example: Consider the equation

$$
y^{2}-x^{5}+5 t \quad x-4 t=0
$$

Are there solutions that can be expressed as polynomials of t ?

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".
- Consider equations with a free parameter t and ask whether there are solutions among "multiples of t ".
- Example: Consider the equation

$$
y^{2}-x^{5}+(5 t)^{4} x-4 t^{4}=0
$$

Are there solutions that can be expressed as polynomials of t ?

From Arithmetic to Geometry

- The original Fermat problem asks to find integer solutions to equations with integer coefficients.
- Replace "integer" with "multiple of t ".
- Consider equations with a free parameter t and ask whether there are solutions among "multiples of t ".
- Example: Consider the equation

$$
y^{2}-x^{5}+(5 t)^{4} x-4 t^{4}=0
$$

Are there solutions that can be expressed as polynomials of t ? Let $x=5 t$ and $y=2 t^{2}$.

Mordell Conjecture

- By changing the parametrization there will always be a solution.

Mordell Conjecture

- By changing the parametrization there will always be a solution.
- There is still something interesting to ask:

Mordell Conjecture

- By changing the parametrization there will always be a solution.
- There is still something interesting to ask:
- Question: Is it true that for any given parametrization there are only finitely many solutions (in t)?

Mordell Conjecture

- By changing the parametrization there will always be a solution.
- There is still something interesting to ask:
- Question: Is it true that for any given parametrization there are only finitely many solutions (in t)?
- This is known as Mordell's Conjecture and was confirmed by Manin in 1963.

Shafarevich's Conjecture

- In 1968 Parshin realized that this is related to another conjecture made by Shafarevich in 1962.

Shafarevich's Conjecture

- In 1968 Parshin realized that this is related to another conjecture made by Shafarevich in 1962.
- The connection is somewhat tricky, but the point is that instead of looking for solutions (in t) the question focuses on studying the "total space" of the curves:

Shafarevich's Conjecture

- In 1968 Parshin realized that this is related to another conjecture made by Shafarevich in 1962.
- The connection is somewhat tricky, but the point is that instead of looking for solutions (in t) the question focuses on studying the "total space" of the curves:
- As t varies, there is a curve C_{t} in the plane that is defined by the equation $f(x, y, t)=0$. The union of these curves form a surface, which is "fibred over the t-line":

Shafarevich's Conjecture

Shafarevich's Conjecture

Shafarevich's Conjecture

- Shafarevich's Conjecture says that under certain (well-defined) conditions there are only finitely many families satisfying the conditions.

Shafarevich's Conjecture

- Shafarevich's Conjecture says that under certain (well-defined) conditions there are only finitely many families satisfying the conditions.
- Parshin's trick shows that Shafarevich's Conjecture implies Mordell's Conjecture.

Shafarevich's Conjecture

- Shafarevich's Conjecture says that under certain (well-defined) conditions there are only finitely many families satisfying the conditions.
- Parshin's trick shows that Shafarevich's Conjecture implies Mordell's Conjecture.
- Parshin and Arakelov proved Shafarevich's Conjecture in 1968-1971.

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions:

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)
- Families with more than one parameter.

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)
- Families with more than one parameter.
- The problem becomes much more complicated and so it is broken up into three subproblems:

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)
- Families with more than one parameter.
- The problem becomes much more complicated and so it is broken up into three subproblems:
- Rigidity

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)
- Families with more than one parameter.
- The problem becomes much more complicated and so it is broken up into three subproblems:
- Rigidity
- Boundedness

Higher dimensional Shafarevich Conjecture

- The problem of parametrized families make sense in higher dimensions: One may study
- Families of higher dimensional objects (surfaces, threefolds, etc.)
- Families with more than one parameter.
- The problem becomes much more complicated and so it is broken up into three subproblems:
- Rigidity
- Boundedness
- Hyperbolicity

Higher dimensional results

- Rigidity

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)
- Viehweg-Zuo (2002), (2003)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács (2003)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács (2003)
- Kovács-Kebekus (2005), (2007)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács (2003)
- Kovács-Kebekus (2005), (2007)

Higher dimensional results

- Rigidity
- Viehweg-Zuo (2002)
- Kovács (2002)
- Boundedness
- Bedulev-Viehweg (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács-Lieblich (2006)
- Hyperbolicity
- Migliorini (1995)
- Kovács (1996), (1997), (2000)
- Viehweg-Zuo (2002), (2003)
- Kovács (2003)
- Kovács-Kebekus (2005), (2007)

Acknowledgement

This presentation was made using the
beamertex 刦EX macropackage of Till Tantau. http://latex-beamer.sourceforge.net

