
Singularities

Sándor Kovács

May 1, 2007





First Impressions

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Pierre de Fermat (1601 - 1665)

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Fermat:
an + bn = cn

for n ≥ 3 has no solution with a, b, c non-zero integers.

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Bolyai, János (1802 - 1860)

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Fermat:
an + bn = cn

for n ≥ 3 has no solution with a, b, c non-zero integers.

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Évariste Galois (1811 - 1832)

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Fermat:
an + bn = cn

for n ≥ 3 has no solution with a, b, c non-zero integers.

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Fermat:
an + bn = cn

for n ≥ 3 has no solution with a, b, c non-zero integers.

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.

Galois died at a very young age (21).



First Impressions

Fermat:
an + bn = cn

for n ≥ 3 has no solution with a, b, c non-zero integers.

Bolyai: hyperbolic geometry.

Galois: solving equations, group theory, field extensions.

Neither Bolyai nor Galois was recognized by their
contemporaries.
Galois died at a very young age (21).



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well? 41 days.

(15 +
√

220)2007 = . . . ?�? . . .

The Japanese kindergarten entry exam...



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well?

41 days.

(15 +
√

220)2007 = . . . ?�? . . .

The Japanese kindergarten entry exam...



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well? 41 days.

(15 +
√

220)2007 = . . . ?�? . . .

The Japanese kindergarten entry exam...



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well? 41 days.

(15 +
√

220)2007 = . . . ?�? . . .

The Japanese kindergarten entry exam...



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well? 41 days.

(15 +
√

220)2007 = . . . 9�9 . . .

The Japanese kindergarten entry exam...



Puzzles

A snail has fallen in a well that’s 50 feet deep. Every
day it climbs up 10 feet, but then it takes a nap and
slides back 9 feet. How long does it take for the snail to
get out of the well? 41 days.

(15 +
√

220)2007 = . . . 9�9 . . .

The Japanese kindergarten entry exam...



The Bus Puzzle



The Bus Puzzle



A Few Good Hungarians



A Few Good Hungarians

Riesz, Frigyes (1880 - 1956)



A Few Good Hungarians

Fejér, Lipót (1880 - 1959)



A Few Good Hungarians

Haar, Alfréd (1885 - 1933)



A Few Good Hungarians

Neumann, János (1903 - 1957)



A Few Good Hungarians

Péter, Rózsa (1905 - 1977)



A Few Good Hungarians

Erdős, Pál (1913 - 1996)



A Few Good Hungarians

Bott, Raoul (1923 - 2005)



...and a few more



...and a few more

Lax, Péter (1926 - )



...and a few more

Lovász, László (1948 - )



...and a few more

Kollár, János (1956 - )



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry

hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry

projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry

finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry

abstract algebra
group theory

(finite simple groups)
commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 

algebraic
geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



Mathematical Impressions

axiomatic geometry
hyperbolic geometry
projective geometry
finite geometry
abstract algebra

group theory
(finite simple groups)

commutative algebra


 algebraic

geometry



First Papers

First paper → took 5 years to get published.

Second paper → Erdős# = 2



First Papers

First paper

→ took 5 years to get published.

Second paper → Erdős# = 2



First Papers

First paper → took 5 years to get published.

Second paper → Erdős# = 2



First Papers

First paper → took 5 years to get published.

Second paper

→ Erdős# = 2



First Papers

First paper → took 5 years to get published.

Second paper → Erdős# = 2



Erdős #
Definition

Erdős’s Erdős# = 0,
Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.
Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Erdős #
Definition

Erdős’s Erdős# = 0,

Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.
Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Erdős #
Definition

Erdős’s Erdős# = 0,
Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.
Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Erdős #
Definition

Erdős’s Erdős# = 0,
Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.

Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Erdős #
Definition

Erdős’s Erdős# = 0,
Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.
Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Erdős #
Definition

Erdős’s Erdős# = 0,
Anyone, who published a research paper with Erdős has
Erdős# = 1,

Anyone, who published a research paper with someone
who has Erdős# = 1, has Erdős# = 2, etc.
Someone’s Erdős# is n if they published a research
paper with someone who has Erdős# = n − 1, but
have not published paper with anyone who has
Erdős# < n − 1.

Example
My Erdős# = 2.



Thesis



Thesis

“Hey, man, what’s your
thesis about?”



Thesis

“Well, it has something to do with
how the universe is changing

through time, and it states that
either the universe does not change
at all, or there must be times when

black holes exist.”

(This is, of course, a very loose and
non-rigorous interpretation.)



Thesis

“Well, it has something to do with
how the universe is changing

through time, and it states that
either the universe does not change
at all, or there must be times when

black holes exist.”
(This is, of course, a very loose and

non-rigorous interpretation.)



Thesis

“Well, it has something to do with
how the universe is changing

through time, and it states that
either the universe does not change
at all, or there must be times when

singularities exist.”

(This is, of course, a very loose and
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In how many point does 1 line intersect another (1)
line? 1/2
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Question: If f (x , y) is a polynomial in x , y of degree
≥ 3 with integer coefficients, does

f (x , y) = 0

have no solution with x , y non-zero rational numbers?
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From Arithmetic to Geometry

The original Fermat problem asks to find integer
solutions to equations with integer coefficients.

Replace “integer” with “multiple of t”.
Consider equations with a free parameter t and ask
whether there are solutions among “multiples of t”.
Example: Consider the equation

y 2 − x5 +

(

5t

)4

x − 4t

4

= 0.

Are there solutions that can be expressed as
polynomials of t? Let x = 5t and y = 2t2.
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Mordell Conjecture

By changing the parametrization there will always be a
solution.

There is still something interesting to ask:

Question: Is it true that for any given parametrization
there are only finitely many solutions (in t)?

This is known as Mordell’s Conjecture and was
confirmed by Manin in 1963.
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Shafarevich’s Conjecture

In 1968 Parshin realized that this is related to another
conjecture made by Shafarevich in 1962.

The connection is somewhat tricky, but the point is that
instead of looking for solutions (in t) the question
focuses on studying the “total space” of the curves:

As t varies, there is a curve Ct in the plane that is
defined by the equation f (x , y , t) = 0. The union of
these curves form a surface, which is “fibred over the
t-line”:



Shafarevich’s Conjecture

In 1968 Parshin realized that this is related to another
conjecture made by Shafarevich in 1962.

The connection is somewhat tricky, but the point is that
instead of looking for solutions (in t) the question
focuses on studying the “total space” of the curves:

As t varies, there is a curve Ct in the plane that is
defined by the equation f (x , y , t) = 0. The union of
these curves form a surface, which is “fibred over the
t-line”:



Shafarevich’s Conjecture

In 1968 Parshin realized that this is related to another
conjecture made by Shafarevich in 1962.

The connection is somewhat tricky, but the point is that
instead of looking for solutions (in t) the question
focuses on studying the “total space” of the curves:

As t varies, there is a curve Ct in the plane that is
defined by the equation f (x , y , t) = 0. The union of
these curves form a surface, which is “fibred over the
t-line”:



Shafarevich’s Conjecture



Shafarevich’s Conjecture



Shafarevich’s Conjecture

Shafarevich’s Conjecture says that under certain
(well-defined) conditions there are only finitely many
families satisfying the conditions.

Parshin’s trick shows that Shafarevich’s Conjecture
implies Mordell’s Conjecture.

Parshin and Arakelov proved Shafarevich’s Conjecture in
1968− 1971.
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higher dimensions:

One may study
Families of higher dimensional objects (surfaces,
threefolds, etc.)
Families with more than one parameter.

The problem becomes much more complicated and so it
is broken up into three subproblems:

Rigidity
Boundedness
Hyperbolicity
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