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ABSTRACT. Let X be a projective variety which is covered by rational curves, for in-
stance a Fano manifold over the complex numbers. In this setup, characterization and
classification problems lead to the natural question: “Given two points onX, how many
minimal degree rational curve are there which contain those points?”. A recent answer
to this question led to a number of new results in classification theory. As an infinitesi-
mal analogue, we ask “How many minimal degree rational curves exist which contain a
prescribed tangent vector?”

In this paper, we give sufficient conditions which guarantee that every tangent vector
at a general point ofX is contained in at most one rational curve of minimal degree. As an
immediate application, we obtain irreducibility criteria for the space of minimal rational
curves.
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1. INTRODUCTION

The study of rational curves of minimal degree has proven to be a very useful tool
in Fano geometry. The spectrum of application covers diverse topics such as deformation
rigidity, stability of the tangent sheaf, classification problems or the existence of non-trivial
finite morphisms between Fano manifolds; see [Hwa01] for an overview.

In this paper we will consider the situation whereX is a projective variety, which is
covered by rational curves, e.g. a Fano manifold overC. An example of that isPn, which
is covered by lines. The key point of many applications of minimal degree rational curves
is showing that the curves in question are similar to lines in certain respects. For instance,
one may ask:
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Question 1.1. Under what conditions does there exist a unique minimal degree rational
curve containing two given points?

This question found a sharp answer in [Keb02a], see [CMSB00] and [Keb02b] for a
number of applications. The argument used there is based on a criterion of Miyaoka, who
was the first to observe that if the answer to the question is “No”, then a lot of minimal
degree curves are singular. We refer to [Kol96, Prop. V.3.7.5] for a precise statement.

As an infinitesimal analogue of this question one may ask the following:

Question 1.2. Are there natural conditions that guarantee that a minimal degree rational
curve is uniquely determined by a tangent vector?

Although a definite answer to the latter question would be as interesting as one to the
former, it seems that Question1.2 has hardly been studied before. This paper is a first
attempt in that direction. We give a criterion which parallels Miyaoka’s approach.

Theorem 1.3. Let X be a projective variety over an algebraically closed fieldk and
H ⊂ RatCurvesn(X) a proper, covering family of rational curves such that none of
the associated curves has a cuspidal singularity. Ifchar(k) 6= 0, assume additionally that
there exists an ample line bundleL ∈ Pic(X) such that for everỳ ∈ H the intersection
numberL.` of L is coprime tochar(k).

Then, ifx ∈ X is a general point, all curves associated with the closed subfamily

Hx := {` ∈ H |x ∈ `} ⊂ H

are smooth atx and no two of them share a common tangent direction atx.

Remark1.3.1. In Theorem1.3we do not assume thatH is irreducible or connected. That
will later be important for the applications.

Remark1.3.2. We refer the reader to Chapter3.3.1 for a brief review of the space
RatCurvesn(X) of rational curves. The volume [Kol96] contains a thorough discussion.

If H ⊂ RatCurvesn(X) is an irreducible component, it is known thatH is proper if
there exists a line bundleL ∈ Pic(X) that intersects a curvè ∈ H with multiplicity
L.` = 1.

For complex projective manifolds we give another result. To formulate the setup prop-
erly, pick an irreducible componentH ⊂ RatCurvesn(X) such that

(1) the rational curves associated withH dominateX,
(2) for a general pointx ∈, the closed subfamilyHx is proper.

Let Ũ be the universal family, which is aP1-bundle overH. The tangent map of the natural
projectionι : Ũ → X, restricted to the relative tangent sheafTŨ/H , gives rise to a rational
mapτ :

P(T∨X)

²²
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It has been shown in [Keb02a] that τ is well-defined and finite over an open set ofX.
Examples of rationally connected manifolds, however, seem to suggest that the tangent
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mapτ is generically injective for a large class of varieties. Our main result supports this
claim.

Theorem 1.4. LetX be a smooth projective variety over the field of complex numbers and
let H ⊂ RatCurvesn(X) be the union of irreducible components such that the subfamily
Hx is proper for all pointsx ∈ X, outside a subvarietyS ⊂ X of codimension at least2.

Thenτ is generically injective, unless the curves associated with the closed subfamily
Hcusp⊂ H of cuspidal curves dominateX, and the subvariety

D := {x ∈ X | ∃` ∈ Hcusp : ` has a cuspidal singularity atx},
where curves have cuspidal singularities, has codimension 1.

Remark1.4.1. It is known that the familyHx is proper for a general pointx ∈ X if
H is a “maximal dominating family of rational curves of minimal degrees”, i.e., if the
degrees of the curves associated withH are minimal among all irreducible components of
RatCurvesn(X) which satisfy condition (1) from above.

The assumption thatHx is proper for all points outside a set of codimension 2, however,
is restrictive.

The structure of the article is as follows. In Section2 we discuss some basic facts
aboutP1-bundles with an irreducible double section. This is elementary, but turns out to
be important later. A central element of the proofs of1.3 and1.4 is the study of families
of dubbies, that is, reducible curves that consist of touching rational curves. Section3
contains the precise definition and relevant properties of dubbies. The actual proofs are
included in Section4.

Although we consider the main results to be interesting on their own, we also present
several applications in Section5.

Acknowledgements.Parts of this paper have been worked out while the first named au-
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After the main part of this paper was written, J.-M. Hwang has informed us that, to-
gether with N. Mok, they have shown a statement similar to, but somewhat stronger than
Theorem1.4. Their unpublished proof uses entirely different methods. To the best of our
knowledge, there is no other result similar to Theorem1.3.

2. P1-BUNDLES WITH DOUBLE SECTIONS

This preliminary section discussesP1-bundles with an irreducible double section. Most
results here are fairly elementary. We have, however, chosen to include detailed proofs for
lack of a suitable reference.

Throughout the present section letλ : Λ → B be aP1-bundle over a normal varietyB,
i.e., a morphism whose scheme-theoretic fibers are all isomorphic toP1. Letσ : B → Λ be
a section ofλ, Σred = σ(B)red ⊂ Λ, and letΣ ⊂ Λ be the first infinitesimal neighborhood
of Σred in Λ. That is, ifΣred is defined by the sheaf of idealsJ = OΛ(−Σred), thenΣ is
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defined by the sheafJ 2. Our aim is to relate properties ofΛ with those of its subscheme
Σ.

2.1. The Picard group of the double section.Recall from [Har77, III. Ex.4.6] that there
exists a short exact sequence of sheaves of Abelian groups, sometimes called that “trun-
cated exponential sequence” in the literature (eg. [BBI00, sect. 2])

(2.1) 0 −→ J /J 2

︸ ︷︷ ︸
=N∨

Σred|Λ

α−→ O∗Σ
β−→ O∗Σred

−→ 1.

HereN∨
Σred|Λ is the conormal bundle,β is the canonical restriction map andα is given by

α : (J /J 2, +) → O∗Σ
f 7→ 1 + f.

In our setup, whereΣred ' B is a section, the truncated exponential sequence (2.1) is
canonically split. Locally we can write the splitting as follows. Assume that we are given
an affine open subsetUα ⊂ Σ and an invertible functionfα ∈ O∗Σ(Uα). Then, after
shrinkingUα, if needed, we will find a bundle coordinateya, identify

O∗Σ(Uα) ' [OΣred(Uα)⊗ k[yα]/(y2
α)]∗

and write accordingly
fα = gα + hα · yα

wheregα ∈ O∗Σred
(Uα) andhα ∈ OΣred(Uα). With this notation, the splitting of se-

quence (2.1) decomposesfα as

fα = gα ·
[
1 +

hα

gα
· yα

]

︸ ︷︷ ︸
∈Im(αUα )

As a direct corollary to the splitting of (2.1) we obtain a canonical decomposition of the
Picard group

(2.2) Pic(Σ) = Pic(Σred)×H1(Σred, N∨
Σred|Λ).

2.2. The cohomology class of a line bundle.Let L ∈ Pic(Λ) be a line bundle. Using the
decomposition (2.2) from above, we can associate toL a classc(L) ∈ H1(Σred, N∨

Σred|Λ).
As this class will be important soon, we will now find aČech-cocycle inZ1(Uα, N∨

Σred|Λ)
that representsc(L).

To this end, find a suitable open affine coverUα of Σ such thatL|Uα is trivial for all
α and where bundle coordinatesyα exist. Letfα ∈ L(Uα) be a collection of nowhere
vanishing sections which we write in local coordinates asfα = gα + hα · yα. Using the
Uα-coordinates on the intersectionUα∩Uβ , the transition functions for the line bundle are
thus written as

fα

fβ
=

gα + hα · yα

gβ + hβ · yα
=

gα

gβ
·
[
1 +

(
hα

gα
− hβ

gβ

)
yα

]
∈ O∗Σ(Uαβ)

In other words, the class ofc(L) ∈ H1(Σred, N∨
Σred|Λ) is represented by thěCech cocycle

(2.3)

(
hα

gα
− hβ

gβ

)
yα ∈ Z1(Uα, N∨

Σred|Λ)
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2.3. Vector bundle sequences associated to line bundles.Consider the ideal sheaf se-
quence forΣred ⊂ Σ.

0 −→ J /J 2 −→ OΣ −→ OΣred −→ 0

Warning2.1. It should be noted thatΣred is not a Cartier-divisor inΣ since its ideal sheaf,
J /J 2 ' N∨

Σred|Λ is not a locally freeOΣ-module. Furthermore, the restriction of the

ideal sheaf ofΣred in Λ to Σ, J ⊗ OΣ ' J /J 3, is not isomorphic to the ideal sheaf of
Σred in Σ, J /J 2 6' J ⊗ OΣ. In fact,J ⊗OΣ is not even a subsheaf ofOΣ.

Construction2.2. Let L ∈ Pic(Σ) be a line bundle. By abuse of notation, identifyΣred

with B and considerL|Σred a line bundle onB. Then twist the above sequence with
the locally freeOΣ-moduleL ⊗ λ∗(L∨|Σred), and obtain the following sequence ofOΣ-
modules,

(2.4) 0 −→ N∨
Σred|Λ −→ L⊗ λ∗(L∨|Σred) −→ OΣred −→ 0.

Finally, consider the push-forward toB:

(2.5) 0 −→ N∨
Σred|Λ −→ λ∗(L)⊗ L∨|Σred︸ ︷︷ ︸

=:EL

A−→ OΣred −→ 0.

We obtain a vector bundleEL of rank two onB which is presented as an extension of
two line bundles. The surjective mapEL → OB induces a sectionσL : B → P(E). We
will use this notation later and also extend it to line bundles,L ∈ Pic(Λ), by EL := EL|Σ
andσL = σL|Σ . Observe that(P(EL), σL) depends onL only up to a twist by a line bundle
pulled back fromB. I.e., forM ∈ Pic(B), EL⊗λ∗M ' EL andσL⊗λ∗M = σL.

Much of our further argumentation is based on the following observation.

Proposition 2.3. Let L ∈ Pic(Σ) be a line bundle andc(L) ∈ H1(Σred, N∨
Σred|Λ) the

class defined above. Thenc(L) coincides with the extension class

e(L) ∈ Ext1(OΣred , N
∨
Σred|Λ) = H1(Σred, N∨

Σred|Λ)

of the vector bundle sequence(2.5). In particular, the map

e : (Pic(Σ),⊗) → (H1(Σred, N∨
Σred|Λ), +)

L 7→ extension class of sequence(2.5)

is a homomorphism of groups.

Proof. The proof relies on an explicit calculation iňCech cohomology. We will choose
a sufficiently fine coverUα of Σred and produce ǎCech cocycle inZ1(Uα, N∨

Σred|Λ) that
represents the extension classe(L). It will turn out that this cocycle equals the one that we
have calculated in (2.3) above forc(L).

We keep the notation from above and letfα ∈ L(Uα) be a collection of nowhere-
vanishing sections ofL. Such sections can be naturally seen to give local splittings of the
sequences (2.4) and (2.5). Explicitly, if we write fα = gα + hα · yα, then

fα

gα
= 1 +

hα

gα
· yα ∈ (L⊗ L∨|Σred)(Uα)

are nowhere-vanishing sections ofL⊗ L∨|Σred and the splitting takes the form

sα : OΣred(Uα) → (L⊗ L∨|Σred)(Uα)
1 7→ 1 + hα

gα
· yα
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By construction ofExt1, we obtain the extension class as the homology class represented
by theČech cocycle

sα(1)− sβ(1) ∈ ker(A)(Uαβ) ' N∨
Σred|Λ(Uαβ)

This difference is given by the following section inN∨
Σred|Λ(Uαβ) which yields the required

cocycle.(
1 +

hα

gα
· yα

)
−

(
1 +

hβ

gβ
· yα

)
=

(
hα

gα
− hβ

gβ

)
yα ∈ Z1(Uα, N∨

Σred|Λ)

That, however, is the same cocycle which we have obtained above in formula (2.3) for the
classc(L). The proof of Proposition2.3 is therefore finished. ¤

2.4. The reconstruction of theP1-bundle from a double section. It is a remarkable fact
that the restriction of an ample line bundleL ∈ Pic(Λ) to a double section carries enough
information so that the wholeP1-bundleΛ can be reconstructed. The proof is little more
than a straightforward application of Proposition2.3. We are grateful to Ivo Radloff who
showed us how to use extension classes to simplify our original proof.

Notation2.4. Let (Λ, σ) and(Λ′, σ′) be twoP1-bundles with sections overB. We say that
(Λ, σ) and(Λ′, σ′) areisomorphic pairs (overB) if there exists a morphismγ : Λ → Λ′,
an isomorphism of pairs, such thatγ is aB-isomorphism ofP1-bundles andγ ◦ σ = σ′.
Sometimes we will refer to these pairs by the image of the section:(Λ, σ(B)), in which
case the meaning ofisomorphic pairsshould be clear.

Theorem 2.5. Given a line bundleL ∈ Pic(Λ), which is not the pull-back of a line bundle
onB, letEL andσL be as in2.2. Consider the relative degreed ∈ Z\{0} of L, i.e., the in-
tersection number with fibers ofλ. If d is coprime tochar(k), then(Λ, σ) and(P(EL), σL)
are isomorphic pairs overB.

Proof. Let H := OΛ(Σred) = J ∨. ThenΛ ' P(λ∗H) andσ : B → Λ is the section
associated to the surjection,λ∗H → λ∗(H|Σred).

First we would like to prove thatλ∗H ' λ∗(H|Σ). Indeed, consider the sequence,

0 −→ H ⊗ J 2 ' J −→ H −→ H|Σ −→ 0.

We need to prove thatλ∗J ' R1λ∗J ' 0. However, that follows from considering the
push-forward of the sequence,

0 −→ J −→ OΛ −→ OΣred −→ 0,

sinceλ∗OΛ ' λ∗OΣred ' OB , andR1λ∗OΛ ' 0.
This implies the statement forL = H, that is, we obtain that(Λ, σ) and(P(EH), σH)

are isomorphic pairs overB (cf. [Har77, II.7.9]).
In order to finish the proof, we are going to prove that(P(EH), σH) and(P(EL), σL) are

isomorphic pairs overB for anyL ∈ Pic(Λ). In fact, it suffices to show that the extension
classes of the following sequences are the same up to a non-zero scalar multiple.

(2.6)
0 −→ N∨

Σred|Λ −→ λ∗(H|Σ)⊗H∨|Σred −→ OΣred −→ 0

0 −→ N∨
Σred|Λ −→ λ∗(L|Σ)⊗ L∨|Σred −→ OΣred −→ 0.

Recall thatPic(Λ) = Z × Pic(B) so that we can writeL ∈ H⊗d ⊗ λ∗M for an
appropriateM ∈ Pic(B). By Proposition2.3this implies that the extension classes of the
sequences (2.6) are given byc (H|Σ) andc

(
H|⊗d

Σ

)
= d · c (H|Σ). In particular, they differ

only by the non-zero factord ∈ k. ¤
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Warning2.6. The construction of the vector bundleEL and Proposition2.3 use only the
restrictionL|Σ. It may thus appear that Theorem2.5could be true without the assumption
thatL ∈ Pic(Λ) and that one could allow arbitrary line bundlesL ∈ Pic(Σ) instead. That,
however, is wrong and counterexamples do exist. Note that the proof of Theorem2.5uses
the fact thatL is contained inZ × Pic(B) which is not true in general ifL ∈ Pic(Σ) is
arbitrary.

The assumption thatd be coprime tochar(k) is actually necessary in Theorem2.5,
as shown by the following simple corollary of Proposition2.3 and of the proof of Theo-
rem2.5.

Corollary 2.7. Using the same notation as in Theorem2.5, assume thatd is divisible by
char(k). Then

λ∗(L|Σ)⊗ L∨|Σred ' N∨
Σred|Λ ⊕OΣred .

3. DUBBIES

Throughout the proofs of Theorems1.3and1.4, which we give in Sections4.1and4.2
below, we will assume thatX contains pairs of minimal rational curves which intersect
tangentially in at least one point. A detailed study of these pairs and their parameter spaces
will be given in the present chapter. The simplest configuration is the following:

Definition 3.1. A dubby is a reduced, reducible curve, isomorphic to the union of a line
and a smooth conic inP2 intersecting tangentially in a single point.

Remark3.1.1. The definition may suggest at first glance that one component of a dubby
is special in that it has a higher degree than the other. We remark that this is not so. A
dubby does not come with a natural polarization. In fact, there exists an involution in the
automorphism group that swaps the irreducible components.

Later we will need the following estimate for the dimension of the space of global
sections of a line bundle on a dubby. Let` = `1 ∪ `2 be a dubby andL ∈ Pic(`) a
line bundle. We say thatL has type(d1, d2) if the restrictions ofL to the irreducible
components̀1 and`2 have degreed1 andd2, respectively.

Lemma 3.2. Let ` be a dubby andL ∈ Pic(`) a line bundle of type(d1, d2). Then
h0(`, L) ≥ d1 + d2.

Proof. By assumption, we have thatL|`i ' OP1(di). Let `1.`2 be the scheme theoretic
intersection of̀ 1 and`2, ιi : `i → ` the natural embedding, andLi = ιi∗(L|`i) for i = 1, 2.
Then one has the following short exact sequence:

0 → L → L1 ⊕ L2 → O`1.`2 → 0.

This implies thath0(`, L) ≥ χ(L) = χ(L1) + χ(L2)− χ(O`1.`2) = d1 + d2. ¤
3.1. The identification of the components of a dubby.To illustrate the main observation
about dubbies, let us consider a very simple setup first: letL ∈ Pic(X) be an ample line
bundle, and assume that` = `1 ∪ `2 ⊂ X is a dubby where both components are members
of the same connected familyH of minimal rational curves. In particular,L|` will be of
type(d, d), whered > 0. Remarkably, the line bundleL induces a canonical identification
of the two components̀1 and`2, at least whend is coprime to the characteristic of the base
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field k. Over the field of complex numbers, the idea of construction is the following: Fix
a trivializationt : L|V → OV of L on an open neighborhoodV of the intersection point
{z} = `1 ∩ `2. Given a pointx ∈ `1 \ `2, let σ1 ∈ H0(`1, L|`1) be a non-zero section that
vanishes atx with multiplicity d. Then there exists auniquesectionσ2 ∈ H0(`2, L|`2)
with the following properties:

(1) The sectionσ2 vanishes at exactly one pointy ∈ `2.
(2) The sectionsσ1 andσ2 agree on the intersection of the components:

σ1(z) = σ2(z)

(3) The differentials ofσ1 andσ2 agree atz:

~v(t ◦ σ1) = ~v(t ◦ σ2)

for all non-vanishing tangent vectors~v ∈ T`1 ∩ T`2 .

The map that associatesx to y gives the identification of the components and does not
depend on the choice oft.

In the following section3.2, we will give a construction of the identification morphism
which also works in the relative setup, for bundles of type(d1, d2) whered1 6= d2, and in
arbitrary characteristic.

3.2. Bundles of dubbies.For the proof of the main theorems we will need to consider
bundles of dubbies, i.e., morphisms where each scheme-theoretic fiber is isomorphic to a
dubby. The following Proposition shows how to identify the components of such bundles.

Proposition 3.3. Let λ : Λ → B be a projective family of dubbies over a normal baseB
and assume thatΛ is not irreducible. Then it has exactly two irreducible componentsΛ1

andΛ2, bothP1-bundles overB. Assume further that there exists a line bundleL ∈ Pic(Λ)
whose restriction to aλ-fiber has type(m,n), wherem andn are non-zero and relatively
prime tochar(k).

If Σred ⊂ Λ1 ∩ Λ2 denotes the reduced intersection, thenΣred is a section overB, and
the pairs(Λ1, Σred) and(Λ2,Σred) are isomorphic overB.

Note that the isomorphism given in Proposition3.3is not canonical and may not respect
the line bundleL.

Proof of Proposition3.3. The mapλ is flat because all its scheme-theoretic fibers are
isomorphic. LetΛ1 ⊂ Λ be one of the irreducible components. It is easy to see that
if x ∈ Λ1 is a general point, thenΛ1 contains the (unique) irreducible component of
`λ(x) := λ−1λ(x) that containsx. Sinceλ is proper and flat,λ(Λ1) = B. HenceΛ1

contains one of the irreducible components of`b for all b ∈ B. Repeating the same ar-
gument with another irreducible component,Λ2, one finds that it also contains one of the
irreducible components of̀b for all b ∈ B. However, they cannot contain the same irre-
ducible component for anyb ∈ B: In fact, if they contained the same component of`b for
infinitely many pointsb ∈ B, then they would agree. On the other hand, if they contained
the same component of`b for finitely many pointsb ∈ B, thenΛ would have an irreducible
component that does not dominateB. This, however, would contradict the flatness ofλ.
HenceΛ1 ∪ Λ2 = Λ. They are bothP1-bundles overB by [Kol96, Thm. II.2.8.1].

Let Σ := Λ1 ∩ Λ2 be the scheme-theoretic intersection. SinceΛ is a bundle of dubbies
and B is normal, it is clear that its reduction,Σred is a section, and thatΣ is its first
infinitesimal neighborhood in eitherΛ1 or Λ2. In this setup, the isomorphism of pairs is
given by Theorem2.5. ¤
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3.3. The space of dubbies.In addition to the space of rational curves, which we use
throughout, it is also useful to have a parameter space for dubbies. For the convenience of
the reader, we will first recall the construction of the former space very briefly. The reader
is referred to [Kol96, chapt. II.1] for a thorough treatment.

3.3.1. The space of rational curves.Recall that there exists a schemeHombir(P1, X)
whose geometric points correspond to morphismsP1 → X that are bira-
tional onto their images. Furthermore, there exists an “evaluation morphism”:
µ : Hombir(P1, X) × P1 → X. The groupPGL2 acts on the normalization
Homn

bir(P1, X), and the geometric quotient exists. More precisely, we have a commu-
tative diagram

Homn
bir(P1, X)× P1

²²

U //

µ

))Univrc(X) ι //

π

²²

X

Homn
bir(P1, X) u // RatCurvesn(X)

whereu andU are principalPGL2 bundles,π is aP1-bundle and the restriction of the
“evaluation morphism”ι to any fiber ofπ is a morphism which is birational onto its image.
The quotient spaceRatCurvesn(X) is then the parameter space of rational curves onX.
The letter “n” in RatCurvesn may be a little confusing. It has nothing to do with the
dimension ofX and it’s not a power. It serves as a reminder that the parameter space is the
normalization of a suitable quasiprojective subset of the Chow variety.

It may perhaps look tempting to define a space of dubbies in a similar manner, as a quo-
tient of the associated Hom-scheme. However, since geometric invariant theory becomes
somewhat awkward for group actions on non-normal varieties, we have chosen another,
elementary but somewhat lengthier approach. The space of dubbies will be constructed as
a quasi-projective subvariety of the space of ordered pairs of pointed rational curves, and
the universal family of dubbies will be constructed directly.

3.3.2. Pointed rational curves.It is easy to see thatRC•(X) = Univrc(X) naturally
parameterizes pointed rational curves onX and the pull-back of the universal family

Univrc
• (X) = RC•(X)×RatCurvesn(X) Univrc(X)

is the universal family of pointed rational curves overRC•(X). The identification mor-
phismRC•(X) → Univrc(X) and the identity map ofRC•(X) gives a section of this
universal family:

Univrc
• (X)

²²

// Univrc(X)

²²
RC•(X)

η

AA

'

66lllllllllllll

π
// RatCurvesn(X)

3.3.3. Ordered pairs of pointed rational curves.The product
RC2

•(X) := RC•(X) × RC•(X) naturally parameterizes pairs of pointed rational
curves. We denote the projections to the two factors byρi : RC2

•(X) → RC•(X) for
i = 1, 2. Then the universal family will be given as the disjoint union

Univrc,2
• (X) =

(
RC2

•(X)×ρ1 Univrc
• (X)

) ∪ (
RC2

•(X)×ρ2 Univrc
• (X)

)
.
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The two copies of the sectionη : RC•(X) → Univrc
• (X) induce two sections of this

family, one for each component of the union:

Univrc,2
• (X)

wwppppppppppp

p̃

²²

''NNNNNNNNNNN

Univrc
• (X)

²²

Univrc
• (X)

²²

RC2
•(X)

ρ1

wwooooooooooo
ρ2

''OOOOOOOOOOO

σ1

FF

σ2

XX

RC•(X)

η

FF

RC•(X)

η

XX

3.3.4. The space of dubbies.Consider the evaluation morphismι2 : Univrc,2
• (X) → X.

The associated tangent mapTι2 restricted to the relative tangent sheafTUnivrc,2
• (X)/ RC2•(X)

gives rise to a rational map

τ rc,2 : Univrc,2
• (X) 99K P(T∨X).

We define a quasiprojective variety, the space of dubbies,

Dubbiesn(X) := normalization of{` ∈ RC2
•(X) | τ rc,2 is defined atσ1(`)

and atσ2(`), andτ rc,2(σ1(`)) = τ rc,2(σ2(`))}.
We will often consider pairs of curves such that both components come
from the same familyH ⊂ RatCurvesn(X). For this reason we define
π2 : Dubbiesn(X) → RatCurvesn(X) × RatCurvesn(X), the natural forgetful
projection morphism, and

Dubbiesn(X)|H := Dubbiesn(X) ∩ π−1
2 (H ×H).

Proposition 3.4. Assume thatH ⊂ RatCurvesn(X) is a proper family of immersed
curves. ThenDubbiesn(X)|H is also proper.

Proof. Since the tangent map,τ rc,2, is well-defined atσ1(`) and σ2(`) for every
` ∈ RC2

•(X) ∩ π−1
2 (H ×H),

Dubbiesn(X) = normalization of{` ∈ RC2
•(X) | τ rc,2(σ1(`)) = τ rc,2(σ2(`))},

which is clearly a closed subvariety of the proper varietyπ−1
2 (H ×H). ¤

The next statement follows immediately from the construction and from the universal
property ofRatCurvesn(X).

Proposition 3.5. Let `1 and`2 ⊂ X be rational curves with normalizations

ηi : P1 ' ˜̀
i → `i ⊂ X.

If Tηi have rank 1 at the point[0 : 1] ∈ P1 for i = 1, 2, and if the images of the tangent
morphisms agree,

Image(Tη1|[0:1]) = Image(Tη2|[0:1]) ⊂ TX ,

then there exists a point` ∈ Dubbiesn(X) such that̃p−1(`) = ˜̀
1 ∪ ˜̀

2.
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If H ⊂ RatCurvesn(X) is a subfamily, and both̀i correspond to points ofH, then we
can find such aǹ in Dubbiesn(X)|H . ¤

Remark 3.5.1. Since RC2
•(X) is the space of ordered pairs of curves, the space

Dubbiesn(X) is really the space of ’ordered dubbies’. In other words, for each pair of
rational curves with tangential intersection, there are at least two points ofDubbiesn(X)
representing it.

3.3.5. The universal family of dubbies.In order to show thatDubbiesn(X) is a space of
dubbies indeed, we need to construct a universal family, which is a bundle of dubbies in
the sense of section3.2. To this end, we will factor the universal evaluation morphism via
a reducible family of dubbies.

Proposition 3.6. The evaluation morphism,

ι : Univrc,2
• (X)×RC2•(X) Dubbiesn(X)︸ ︷︷ ︸

=:Ũ, decomposes as̃U1∪Ũ2

−→ U ⊂ X ×Dubbiesn(X),

factors as follows.

(3.1) Ũ
α //

ι

((

two disjoint
P1-bundlesŨ1 ∪ Ũ2

p̃

**

Λ
β //

p̂
bundle of
dubbies ²²

U

p

bundle of two curves with
complicated intersection

tt
Dubbiesn(X)

For every irreducible componentD ⊂ Dubbiesn(X), the preimageΛD := p̂−1(D) is
reducible, and is a bundle of dubbies in the sense that for every closed pointb ∈ D, the
fiber p̂−1(b) is isomorphic to a dubby.

Remark3.6.1. If ` ∈ Dubbiesn(X) is any point, then the two corresponding curves in
X intersect tangentially in one point, but may have very complicated intersection at that
point and elsewhere. The factorization of the evaluation morphism should therefore be
understood as a partial resolution of singularities, as shown in figure3.1.

Proof. As a first step we will construct the spaceΛ. Because the evaluationι is a finite,
hence affine, morphism, it seems appropriate to construct a suitable subsheafA ⊂ ι∗OŨ ,
which is a coherent sheaf ofOU -modules and setβ : Λ = Spec(A) → U .

Let σ̄1 ⊂ Ũ1 andσ̄2 ⊂ Ũ2 be the images of the pullbacks of the canonical sections,σ1

andσ2, constructed in3.3.3. In order to constructA, we will need to find an identification
of their first infinitesimal neighborhoods,̃σ1 and σ̃2. Sinceι is separable, it follows di-
rectly from the construction that̃σ1 andσ̃2 map isomorphically onto their scheme-theoretic
imagesι(σ̃1) and ι(σ̃2). Again, by the definition ofDubbiesn(X), these images agree:
ι(σ̃1) = ι(σ̃2) and we obtain the desired identification,

γ : σ̃1 → σ̃2.

Let
i1 : σ̃1 → Ũ1 and i2 : σ̃2 → Ũ2

be the inclusion maps and consider the sheaf morphism

ϕ := ι∗(i
#
1 − γ# ◦ i#2 ) : ι∗OŨ → ι∗Oσ̃1 .
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α //

ι

''

two disjoint
P1-bundles

p̃

$$

β //

p̂
bundle of
dubbies

²²

p

bundle of two rational curves
with complicated intersection

zz

FIGURE 3.1. A partial resolution of singularities

The sheaf

A := ker(ϕ)

is thus a coherent sheaf ofOU -modules. As it was planned above, defineΛ := Spec(A).
The existence of the morphismsα andβ and thatι = β ◦ α follows from the construction.
It remains to show thatΛ is a bundle of dubbies. Let` ∈ Dubbiesn(X) be a closed point.
ReplacingDubbiesn(X) with a neighborhood of̀ and passing to a finite, unbranched
cover if necessary, and by abuse of notation still denoting it byDubbiesn(X), we can
assume that

(1) the varietyDubbiesn(X) is affine, sayDubbiesn(X) ' Spec R,
(2) theP1-bundlesŨi = P(p̃∗OŨi

(σ̄i)∨), for i = 1, 2 are trivial, and

(3) there exists a Cartier divisorτ ⊂ U such thatι−1(τ) = τ1 ∪ τ2, whereτi ⊂ Ũi

are sections that are disjoint from̄σi.

We can then find homogeneous bundle coordinates[x0 : x1] on Ũ1 and [y0 : y1] on Ũ2

such that

σ̄1 = {([x0 : x1], b) ∈ Ũ1 |x0 = 0}, τ1 = {([x0 : x1], b) ∈ Ũ1 |x1 = 0},
σ̄2 = {([y0 : y1], b) ∈ Ũ2 | y0 = 0}, and τ2 = {([y0 : y1], b) ∈ Ũ2 | y1 = 0}.

If we set

Ũ0 := Ũ \ (τ1 ∪ τ2),

then the imageU0 := ι(Ũ0) is affine, and we can write the relevant modules as

OŨ (Ũ0) ' R⊗ (k[x0]⊕ k[y0])

Oσ̃1(Ũ0) ' R⊗ k[x0]/(x2
0).

Oσ̃2(Ũ0) ' R⊗ k[y0]/(y2
0).
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ΛT

τ1

pr1◦β //

p̂
²²

X

x •

T

FIGURE 4.1. Proof of Theorem1.4

Adjusting the bundle coordinates, if necessary, we can assume that the identification mor-
phismγ#(U0) : Oσ̃2(Ũ0) → Oσ̃1(Ũ0) is written as

γ#(U0) : R⊗ k[y0]/(y2
0) → R⊗ k[x0]/(x2

0)
r ⊗ y0 7→ r ⊗ x0.

In this setup, we can find the morphismϕ explicitly:

ϕ(U0) : R⊗ (k[x0]⊕ k[y0]) → R⊗ k[x0]/(x2
0)

r ⊗ (f(x0), g(y0)) 7→ r ⊗ (f(x0)− g(x0)).

Therefore, as anR-algebra,ker(ϕ)(U0) is generated by the elementsu := 1R ⊗ (x0, y0)
andv := 1R ⊗ (x2

0, 0), which satisfy the single relationv(u2 − v) = 0. Thus

ker(ϕ)(U0) = R⊗ k[u, v]/(v(u2 − v)).

In other words,β−1(U0) is a bundle of two affine lines overDubbiesn(X), meeting tan-
gentially in a single point.

It follows directly from the construction ofA that α is an isomorphism away from
σ̄1∪ σ̄2. The curvêp−1(`) is therefore smooth outside ofp̂−1(`)∩β−1(U0), and it follows
that p̂−1(`) is indeed a dubby. This shows thatΛ is a bundle of dubbies.

To finish the proof, we need to verify thatΛD is reducible. To that end, recall from
section3.3.2 that the universal familỹU |D = p̃−1(D) is the disjoint union of twoP1-
bundles. Sinceα is isomorphic away from̄σ1 ∪ σ̄2, it follows that ΛD = α(Ũ |D) is
reducible as claimed. This ends the proof. ¤

4. PROOFS OF THEMAIN THEOREMS

4.1. Proof of Theorem 1.3. The assertion that all curves associated withHx are smooth
at a general pointx ∈ X follows immediately from the assumption that none of the curves
` ∈ H is cuspidal, and by [Keb02b, thms. 2.4(1) and 3.3(1)]. It remains to show that no
two curves intersect tangentially.

We will argue by contradiction and assume that we can find a pair` = `1 ∪ `2 ⊂ X
of distinct curves̀ i ∈ H that intersect tangentially atx. The pair` is then dominated
by a dubby whose singular point maps tox. Loosely speaking, we will move the point of
intersection to obtain a positive-dimensional family of dubbies that all contain the pointx
–see figure4.1.
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Setup.To formulate our setup more precisely, we will use the notation introduced in di-
agram (3.1) of Proposition3.6 and recall from Proposition3.4 that Dubbiesn(X)|H is
proper. Recall further that the universal familyU is a subsetU ⊂ X ×Dubbiesn(X) and
let  := pr1◦ι : Ũ → X be the canonical morphism. The assumption that for every general
pointx ∈ X, there is a pair of curves intersecting tangentially atx can be reformulated as

 ◦ σ1(Dubbiesn(X)|H) =  ◦ σ2(Dubbiesn(X)|H) = X

Let D ⊂ Dubbiesn(X)|H be an irreducible component such that

 ◦ σ1(D) =  ◦ σ2(D) = X

holds. By abuse of notation, we will denotẽUD = (ŨD)1 ∪ (Ũ2)D by Ũ = Ũ1 ∪ Ũ2. Fix
a closed pointt ∈ D and consider the intersection numbers

d1 := ∗(L) · (p̃−1(t) ∩ Ũ1) and d2 := ∗(L) · (p̃−1(t) ∩ Ũ2)

RenumberingŨ1 and Ũ2, if necessary, we may assume without loss of generality that
d1 ≥ d2. In this setup it follows from the upper semi-continuity of the fiber dimension that
(|Ũ1

)−1(x) contains an irreducible curveτ1 which intersectsσ1(D) non-trivially and is
not contained in

S := {y ∈ Ũ | ι is not an isomorphism aty}
SetT := p̃(τ1). After a base change, if necessary, we may assume thatT is a normal curve
and consider the restrictions of the morphisms constructed in Proposition3.6:

ŨT α
//



))ΛT
β

// UT pr1
// X

Using [Keb02a, thm. 3.3.(1)], we find thatτ1 is generically injective overT , and therefore
is a section. Let̃UT,1 = (Ũ1)T andŨT,2 = (Ũ2)T . It follows directly from the reducibil-
ity assertion of Proposition3.6 ΛT is reducible, and it follows from Proposition3.3 that
(ŨT,1, σ1(T )) and(ŨT,2, σ2(T )) are isomorphic pairs overT . Let γ : ŨT,1 → ŨT,2 be an
isomorphism and consider the sectionτ2 := γ(τ1) ⊂ ŨT,2.

The contraction ofτ2. With the notation above, Theorem1.3 follows almost immediately
from the following observation.

Lemma 4.1. The morphism contracts the sectionτ2 to x, i.e.,τ2 ⊂ −1(x).

Notice that this finishes the proof of Theorem1.3. Indeed, Lemma4.1 implies that a
general pointt ∈ T corresponds to a pair`t = `t,1∪`t,2 of two distinct curves that intersect
atx. The curvè t is then singular atx, a contradiction to the fact thatτ1 6⊂ S.

Proof Lemma4.1. As a first step, we show that contractsτ2 to some pointy ∈ X. The
proof relies on a calculation of intersection numbers on the ruled surfacesŨT,1 andŨT,2.
Recall the basic fact that

Num(ŨT,1) = Z · σ1(T )⊕ Z · FV,1

whereFV,1 is a fiber ofp̃ŨT,1
: ŨT,1 → T . A similar decomposition holds for̃UT,2. Since

τ1 is a section, we have the numerical equivalence,

τ1 ≡ σ1(T ) + d · FV,1,

whered is a suitable integer. Sinceγ mapsσ1(T ) isomorphically ontoσ2(T ), we obtain a
similar equation oñUT,2,

τ2 ≡ σ2(T ) + d · FV,2.
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Next take the ample line bundleL ∈ Pic(X) and set

d3 := ∗(L) · σ1(T ) = ∗(L) · σ2(T ).

These two numbers are indeed equal since the evaluation morphism identifies the images
of the two sectionsσ1(T ) andσ2(T ). Now we can write the intersection numbers as

∗(L) · τ2 = ∗(L) · (σ2(T ) + d · FV,2)

= d3 + d · d2 = (d3 + d · d1)︸ ︷︷ ︸
=∗(L)·τ1=0

+d · (d2 − d1)

= d · (d2 − d1) ≤ 0

SinceL is ample, this shows that(τ2) is a point,y ∈ X.
It remains to prove thatx = y. In order to see that, it suffices to recall two facts. First,

as it was already used above, the evaluation morphism identifies the images of the two
sectionsσ1(T ) andσ2(T ). Second, we know thatτ1 and the canonical sectionσ1 ⊂ Λ1

intersect. Lett ∈ p̃(τ1 ∩ σ1(T )) be a closed point. The two sectionsτ2 andσ2(T ) will
then also intersect,t ∈ p̃(τ2 ∩ σ2(T )) and we obtain

x = (τ1) = (τ1 ∩ σ1(T ) ∩ p̃−1(t))

= (τ2 ∩ σ2(T ) ∩ p̃−1(t)) = y.

Lemma4.1 is thus shown. ¤
4.2. Proof of Theorem1.4. Let H ⊂ RatCurvesn(X) be as in Theorem1.4. We assume
without loss of generality that all irreducible components ofH dominateX. Fix an ample
line bundleL ∈ Pic(X) and letH ′ ⊂ H be an irreducible component such that for a
general curveC ∈ H ′ the intersection numberL.C is minimal among all the intersection
numbers ofL with curves fromH. Finally, fix a rational curveC ⊂ X that corresponds to
a general point ofH ′.

The proof of Theorem1.4now follows very much the lines of the proof of Theorem1.3
from the previous section. The main difference to the previous argument is that we have
to work harder to find the familyT , as the properness ofDubbiesn(X)|H is no longer
automatically guaranteed. Over the complex number field, however, the following lemma
holds, which replaces the properness assumption in our context.

Lemma 4.2. Assume thatX is a complex-projective manifold, and letS′ ⊂ X be a
subvariety of codimensioncodimX S′ ≥ 2. If C ∈ H is a curve that corresponds to a
general point ofH ′, thenC andS′ are disjoint:C ∩ S′ = ∅.
Proof. [Kol96, Chapt. II, Prop. 3.7 and Thm. 3.11] ¤
Corollary 4.3. Under the assumptions of Theorem1.4, if C ∈ H ′ is a general curve, and
if codimX D ≥ 2, then

HC := {C′ ∈ H | C ∩ C′ 6= ∅} ⊂ H

is proper, and the associated curves are immersed alongC. In particular,C is immersed.

Proof. It suffices to note thatC is disjoint from bothS andD. ¤
Before coming to the proof of Theorem1.4, we give a last preparatory lemma concern-

ing the dimension of the locusD of cusps.

Lemma 4.4. If D ⊂ X is a divisor, then the subfamilyHcusp ⊂ H of cuspidal curves
dominatesX.
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ΛT

ŨT,2

pr1◦β //

p̂

²²

`1 x •

C

T

FIGURE 4.2. Proof of Theorem1.4

Proof. Argue by contradiction and assume that all cuspidal curves inHcusp are contained
in a divisor. The total space of the family of cuspidal curves is then at least(dim D + 1)-
dimensional, so for a general pointx ∈ D there exists a positive dimensional family of
cuspidal curves that containx and are contained inD. That, however, is impossible: it
has been shown in [Keb02a, Thm. 3.3] that in the projective varietyD, a general point is
contained in no more then finitely many cuspidal curves. ¤

Setup of the proof.For the proof of Theorem1.4, we will again argue by contradiction.
By Lemma4.4 this amounts to the assumption thatτ is not generically injective, and that
codimX D ≥ 2. By Corollary4.3, this implies that the space of curves which intersectC is
proper and all associated curves are immersed alongC. SinceC was a general curve, the as-
sumptions also imply that for a general pointx ∈ C, there exists a pointt ∈ Dubbiesn(X)
corresponding to a pair of marked curves` = `1 ∩ `2 such that̀ 2 = C and`1 intersectsC
tangentially atx, i.e., Image(τ(σ1(t))) = P(TC |∨x ) whereτ : Ũ → P(T∨X) is the tangent
morphism from the introduction. Hence we can find a proper curveT ⊂ Dubbiesn(X)
with associated diagram

ŨT α
//



))

p̃ ((

ΛT
β

//

p̂

²²

UT pr1
//

p
vv

X

T

such thatŨT decomposes as̃UT = ŨT,1 ∪ ŨT,2, where

ŨT,2 ' C̃ × T ' P1 × T,

and whereτ |σ1(T ) dominatesP(T∨C ).

End of proof.We are now in a situation which is very similar to the one considered in the
proof of Theorem1.3: we will derive a contradiction by calculating certain intersection
numbers oñUT,1 andŨT,2.

As a first step, remark that̃UT,1 maps to a surface inX. It follows that∗(L) is nef and
big onŨT,1.
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Secondly, sincẽUT,2 is isomorphic to the trivial bundleP1×T , we have a decomposition

Num(ŨT,2) ' Z · FH,2 ⊕ Z · FV,2

whereFH,2 is the numerical class of a fiber of the mapŨT,2 → P1 andFV,2 that of a
fiber of the map̃UT,2 → T . Likewise, since the pairs(ŨT,1, σ1(T )) and(ŨT,2, σ2(T )) are
isomorphic, let

Num(ŨT,1) ' Z · FH,1 ⊕ Z · FV,1

be the corresponding decomposition. Ifd denotes the degree of the (finite, surjective)
morphism

 ◦ σ1 =  ◦ σ2 : T → C,
then it follows directly from the construction that the curves of typeFH,2 intersectσ2(T )
with multiplicity d. We obtain that

σ2(T ) ≡ FH,2 + d · FV,2 and thus σ1(T ) ≡ FH,1 + d · FV,1.

To end the argumentation, let

d1 := ∗(L) · FV,1 and d2 := ∗(L) · FV,2

In particular, since∗(L).FH,2 = 0, we have that∗(L) · σ2 = d · d2. Recall thatH ′ ⊂ H
was chosen so thatd1 ≥ d2 and write:

∗(L) · FH,1 = ∗(L) · (σ1(T )− d · FV,1)
= d · d2 − d · d1

≤ 0.

BecauseŨT,1 is covered by curves which are numerically equivalent toFH,1 that con-
tradicts the assumption that∗(L)|ŨT,1

is big and nef. The proof of Theorem1.4 is thus
finished. ¤

5. APPLICATIONS

5.1. Irreducibility Questions. Let H ⊂ RatCurvesn(X) be a maximal dominating fam-
ily of rational curves of minimal degrees on a projective varietyX. How many components
canH have? If we pick an irreducible componentH ′ ⊂ H and fix a general pointx ∈ X,
does it follow that

H ′
x := {` ∈ H ′ |x ∈ `}

is irreducible? These questions have haunted the field for quite a while now, as the possibil-
ity thatH ′

x might be reducible poses major problems in many of the proposed applications
of rational curves to complex geometry —see the discussion in [Hwa01].

It is conjectured [Hwa01, chap. 5, question 2] that the answers to both of these questions
are affirmative for a large class of varieties. There exists particularly strong evidence ifX
is a complex manifold and if the dimension ofH ′

x is not too small. Theorem1.3 enables
us to give a partial answer.

Theorem 5.1. Under the assumptions of Theorem1.3, if X is a complex manifold and if
for a general pointx ∈ X, and for all irreducible componentsH ′ ⊂ H

dim H ′
x ≥

dim X − 1
2

,

thenHx is irreducible. In particular,H is irreducible.
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The main technical difficulty in proving Theorem5.1 lies in the fact that the closed
points ofH are generally not in 1:1-correspondence with actual rational curves, a pos-
sibility that is sometimes overlooked in the literature. As a matter of fact, this corre-
spondence is only generically injective, and it may well happen that two or more points
of H correspond to the same curve` ⊂ X. This is due to the very construction of the
spaceRatCurvesn(X): recall from section3.3 that RatCurvesn(X) is constructed as
the quotient of thenormalizationof Hombir(P1, X). While Hombir(P1, X) is in 1:1-
correspondence with morphisms,P1 → X, that are birational onto their imnage, the nor-
malization morphism

Homn
bir(P1, X) → Hombir(P1, X),

need not be injective. For complex manifolds, however, we have the following workaround.

Lemma 5.2. Under the assumptions of Theorem5.1, let x ∈ X be a general point and set

Hx := {` ∈ H |x ∈ `}
Then the closed points ofHx are in 1:1-correspondence with the associated curves inX.

Proof. Since x is a general point and since we have picked a fixed component,H ′,
all rational curves throughx are free by the proof of [KMM92, thm. 1.1]. The space
Hombir(P1, X) is therefore smooth at every pointf ∈ Hombir(P1, X) whose image con-
tains the pointx by [Kol96, thm. II.1.7]. The normalization morphism

Homn
bir(P1, X) → Hombir(P1, X),

is thus isomorphic in a neighborhood off . SinceHombir(P1, X) is in 1:1 correspondence
with morphismsP1 → X, the claim follows. ¤

This enables us to prove Theorem5.1.

Proof of Theorem5.1. Choose a general pointx ∈ X, and letτ : H 99K P(T∨X) be the
tangent morphism described in the introduction. Since all curves associated withHx are
smooth,τ restricts to a regular morphism

τx : Hx → P(T∨X |x).

This morphism is known to be finite [Keb02a, thm. 3.4]. By Theorem1.3, τx is injective.
Now assume thatHx is not irreducible,Hx = Hx,1 ∪ . . . ∪Hx,n. Sinceτx is finite, we

have that

dim(τx(Hx,1)) + dim(τx(Hx,2)) ≥ dim X − 1 = dimP(T∨X |x)

Thus, by [Har77, thm. I.7.2],

τx(Hx,1) ∩ τx(Hx,2) 6= ∅.
It follows thatτ is not injective, a contradiction. ¤

Lemma5.2raises the following question.

Question 5.3. Are there other conditions than smoothness overC which guarantee that
closed points ofHx are in 1:1-correspondence with rational curves?
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5.2. Automorphism groups of projective manifolds and their spaces of rational
curves. The setup of Theorem5.1naturally generalizes the notion of a prime Fano mani-
fold, i.e., one that is covered by lines under a suitable embedding. Some of the results that
have been obtained for prime Fanos hold in the more general setup of Theorem5.1. We
give one example.

For any complex varietyX, letAut0(X) denote the maximal connected subgroup of the
group of automorphisms. By universal properties, an automorphism of a complex variety
induces an automorphism of the spaceRatCurvesn(X). It might be interesting to note
that in our setup the converse also holds.

Theorem 5.4. In the setup of Theorem5.1, if b2(X) = 1, then the groupsAut0(X) and
Aut0(H) coincide.

Proof. The theorem follows from Theorem5.1 and [HM02, Thm. 1] —observe that the
proof of [HM02, Thm. 1] works without the assumption thatH is a dominating family of
rational curves of minimal degrees because we assume here thatH is proper. ¤

5.3. Contact Manifolds. Let X be a projective contact manifold overC, e.g. the twistor
space over a Riemannian manifold with Quaternionic-Kählerian holonomy group and pos-
itive curvature. We refer to [Keb01c] and the references therein for an introduction and for
the relevant background information.

If X is different from the projective space, it has been shown in [Keb01c] that X is
covered by a compact family of rational curvesH ⊂ RatCurvesn(X) such that for a gen-
eral pointx, all curves associated with points inHx are smooth. Thus, the assumptions
of Theorem1.4 are satisfied, andτ is generically injective. This has been shown previ-
ously in [Keb01b] using rather involved arguments which heavily rely on obstructions to
deformations coming from contact geometry.
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