ARE MINIMAL DEGREE RATIONAL CURVES DETERMINED BY THEIR
TANGENT VECTORS?

STEFAN KEBEKUS AND SANDOR J. KOVACS

ABSTRACT. Let X be a projective variety which is covered by rational curves, for in-
stance a Fano manifold over the complex numbers. In this setup, characterization and
classification problems lead to the natural question: “Given two point& phow many
minimal degree rational curve are there which contain those points?”. A recent answer
to this question led to a number of new results in classification theory. As an infinitesi-
mal analogue, we ask “How many minimal degree rational curves exist which contain a
prescribed tangent vector?”

In this paper, we give sufficient conditions which guarantee that every tangent vector
at a general point oX is contained in at most one rational curve of minimal degree. As an
immediate application, we obtain irreducibility criteria for the space of minimal rational
curves.
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1. INTRODUCTION

The study of rational curves of minimal degree has proven to be a very useful tool
in Fano geometry. The spectrum of application covers diverse topics such as deformation
rigidity, stability of the tangent sheaf, classification problems or the existence of non-trivial
finite morphisms between Fano manifolds; sdeva0]] for an overview.

In this paper we will consider the situation whekeis a projective variety, which is
covered by rational curves, e.g. a Fano manifold &zeAn example of that i®", which
is covered by lines. The key point of many applications of minimal degree rational curves
is showing that the curves in question are similar to lines in certain respects. For instance,
one may ask:
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Question 1.1. Under what conditions does there exist a unique minimal degree rational
curve containing two given points?

This question found a sharp answer [Keb02g, see ICMSBO( and Keb02l] for a
number of applications. The argument used there is based on a criterion of Miyaoka, who
was the first to observe that if the answer to the question is “No”, then a lot of minimal
degree curves are singular. We referkol96, Prop. V.3.7.5] for a precise statement.

As an infinitesimal analogue of this question one may ask the following:

Question 1.2. Are there natural conditions that guarantee that a minimal degree rational
curve is uniguely determined by a tangent vector?

Although a definite answer to the latter question would be as interesting as one to the
former, it seems that Questidn2 has hardly been studied before. This paper is a first
attempt in that direction. We give a criterion which parallels Miyaoka’s approach.

Theorem 1.3. Let X be a projective variety over an algebraically closed fiéldand
H C RatCurves"(X) a proper, covering family of rational curves such that none of
the associated curves has a cuspidal singularitghlr(k) # 0, assume additionally that
there exists an ample line bundiec Pic(X) such that for every € H the intersection
numberL.¢ of L is coprime tochar(k).

Then, ifx € X is a general point, all curves associated with the closed subfamily

H,.={{eH|zel}CH
are smooth at and no two of them share a common tangent direction at

Remarkl.3.1 In Theorenil.3we do not assume thaf is irreducible or connected. That
will later be important for the applications.

Remark1.3.2 We refer the reader to Chapt83.1 for a brief review of the space
RatCurves®(X) of rational curves. The volum&bI96] contains a thorough discussion.

If H C RatCurves™(X) is an irreducible component, it is known thétis proper if
there exists a line bundle € Pic(X) that intersects a curvé € H with multiplicity
L/t=1.

For complex projective manifolds we give another result. To formulate the setup prop-
erly, pick an irreducible componefif C RatCurves”(X) such that

(1) the rational curves associated withdominateX,
(2) for a general point €, the closed subfamilyi, is proper.

LetU be the universal family, which is!-bundle overH. The tangent map of the natural
projection. : U — X, restricted to the relative tangent shé?@f/ 1+ gives rise to a rational
mapr:

T - P(T)v()

-

e
7
/
X

L
—_—
evaluation

h

7 | PL-bundle

-

H

It has been shown irKleb024 that = is well-defined and finite over an open setXf
Examples of rationally connected manifolds, however, seem to suggest that the tangent
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mapT is generically injective for a large class of varieties. Our main result supports this
claim.

Theorem 1.4. Let X be a smooth projective variety over the field of complex numbers and
let H C RatCurves™(X) be the union of irreducible components such that the subfamily
H, is proper for all pointse € X, outside a subvariety C X of codimension at leagt

Thenr is generically injective, unless the curves associated with the closed subfamily
HC'SP C H of cuspidal curves dominat¥, and the subvariety

D :={x € X| 3¢ € H*P: ¢ has a cuspidal singularity at},
where curves have cuspidal singularities, has codimension 1.

Remark1.4.1 It is known that the familyH, is proper for a general point € X if
H is a “maximal dominating family of rational curves of minimal degrees”, i.e., if the
degrees of the curves associated wittare minimal among all irreducible components of
RatCurves™(X) which satisfy condition (1) from above.

The assumption thdf,, is proper for all points outside a set of codimension 2, however,
is restrictive.

The structure of the article is as follows. In Sect®mwe discuss some basic facts
aboutP*-bundles with an irreducible double section. This is elementary, but turns out to
be important later. A central element of the proofsld and1.4 is the study of families
of dubbies that is, reducible curves that consist of touching rational curves. Segtion
contains the precise definition and relevant properties of dubbies. The actual proofs are
included in Sectio/.

Although we consider the main results to be interesting on their own, we also present
several applications in Sectifin
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After the main part of this paper was written, J.-M. Hwang has informed us that, to-
gether with N. Mok, they have shown a statement similar to, but somewhat stronger than
Theorenil.4 Their unpublished proof uses entirely different methods. To the best of our
knowledge, there is no other result similar to Theotef

2. P1-BUNDLES WITH DOUBLE SECTIONS

This preliminary section discussBs-bundles with an irreducible double section. Most
results here are fairly elementary. We have, however, chosen to include detailed proofs for
lack of a suitable reference.

Throughout the present section Jet A — B be aP!-bundle over a normal varieti,

i.e., a morphism whose scheme-theoretic fibers are all isomorphic lceto : B — A be
a section of\, ¥,.qg = 0(B)ea C A, andlet C A be the first infinitesimal neighborhood
of ¥,eq I A. That is, if¥,.q is defined by the sheaf of ideals = O (—X,cq), thenX is
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defined by the sheaf . Our aim is to relate properties df with those of its subscheme
3.

2.1. The Picard group of the double section.Recall from Har77, lll. Ex.4.6] that there
exists a short exact sequence of sheaves of Abelian groups, sometimes called that “trun-
cated exponential sequence” in the literature (B&I100, sect. 2])

2.1) 0— J)T° S0y L os  —1
N——

=NV
Zred|A

Here]\fzvrcd‘A is the conormal bundleq is the canonical restriction map ands given by

o (j/j2,+) - 0%
f — 14 f.
In our setup, wher&,.q ~ B is a section, the truncated exponential sequeBct {s
canonically split. Locally we can write the splitting as follows. Assume that we are given
an affine open subséf, C ¥ and an invertible functiorf, € O%.(U,). Then, after
shrinkingU,,, if needed, we will find a bundle coordinagg, identify

05 (Ua) = [05,..(Ua) @ klyal / (y2)]*
and write accordingly
fa =ga t+ ha Yo

whereg, € 05, (Us) andh, € Os, ,(Uy). With this notation, the splitting of se-
guence2.1) decomposeg,, as

he
f(x =0« |:1+X y(x:|
Ya
—_————
€lm(ay,)
As a direct corollary to the splitting oP(1) we obtain a canonical decomposition of the
Picard group

(2.2) Pic(X) = Pic(Sred) X H' (Sred; Nyi,,a)-

2.2. The cohomology class of a line bundleLet L € Pic(A) be a line bundle. Using the
decompositionZ.2) from above, we can associateft@ class:(L) € H' (3,4, NZVW”A).

As this class will be important soon, we will now fincfEch-cocycle izl (U,, Ngred ‘A)
that represents(L).

To this end, find a suitable open affine cov&y of ¥ such thatL|y,, is trivial for all
« and where bundle coordinatgs exist. Letf, € L(U,) be a collection of nowhere
vanishing sections which we write in local coordinatesas= g + ha - yo- Using the
U,-coordinates on the intersectiéih, N Ug, the transition functions for the line bundle are
thus written as

fa Ja + ha - Ya Ja |: <ha h,@) ] *
so _doTla Ja_Jo gy — L) ya| € 05U,
fs 9s+hs-va 93 5(Uas)

9o 95
In other words, the class of L) € H'(X,q, Ngredm) is represented by theech cocycle

ho h
(23) (ga - gg) Yo € Zl(UaaNgmdM)
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2.3. Vector bundle sequences associated to line bundle€onsider the ideal sheaf se-
guence folX,.q C X.

0—>.,7/j2—>02—>02md —0
Warning2.1 It should be noted that,.q is not a Cartier-divisor irt since its ideal sheaf,
j/j2 ~ Ngmdm is not a locally freeOx-module. Furthermore, the restriction of the
ideal sheaf o, iINAtOY, J ® Oy ~ j/j3, is not isomorphic to the ideal sheaf of
Yieq iN Y, j/j2 #* J ® Os. Infact, 7 ® Oy is not even a subsheaf 6fs.

Construction2.2. Let L € Pic(X) be a line bundle. By abuse of notation, idenfify.q
with B and considetL|s,_, a line bundle onB. Then twist the above sequence with
the locally freeOx-moduleL ® \*(L"|s,.,), and obtain the following sequence Gf:-
modules,

(2.4) 0— Ny _ja — LON(LY]s,.,) — O, — 0.

Finally, consider the push-forward 1®:

(2.5) 0—NY 1w — ML) LY]s. 2 05, —0.
Sred|A red

=:£r
We obtain a vector bundl€;, of rank two onB which is presented as an extension of
two line bundles. The surjective m&p, — Op induces a section;, : B — P(£). We
will use this notation later and also extend it to line bundles; Pic(A), by £ := &,

andoy, = or,. Observe thatlP(£1,), o1,) depends otk only up to a twist by a line bundle
pulled back fromB. l.e., forM € Pic(B), Ergrm ~ L andopgrsym = or.

red

Much of our further argumentation is based on the following observation.

Proposition 2.3. Let L € Pic(X) be a line bundle and(L) € Hl(Ered,NEVred‘A) the
class defined above. Thef(l) coincides with the extension class
C(L) € Eth(OEred7 Ngj/red\A) = Hl(Eer, Ngj/red\A)

of the vector bundle sequen(Z5). In particular, the map

e: (Pic(¥),®) — (Hl(Ered,N%/mdlA), +)

L — extension class of sequen@:?5)

is a homomorphism of groups.
Proof. The proof relies on an explicit calculation {ech cohomology. We will choose

a sufficiently fine covet/,, of ¥,.q and produce &ech cocycle inZz!(U,, szmdlA) that
represents the extension clag&). It will turn out that this cocycle equals the one that we
have calculated ir.3) above forc(L).

We keep the notation from above and Jet € L(U,) be a collection of nowhere-
vanishing sections af. Such sections can be naturally seen to give local splittings of the
sequence2(4) and 2.5). Explicitly, if we write f, = go + hqa - Yo, then

fa poa) (Ua)

ha
=142y, e(La LY
Ja
are nowhere-vanishing sectionsfx LV |5, , and the splitting takes the form

Ja
sat Os,,Us) — (L®LV[s,,)(Ua)
1 = 1+ 270 " Yo




6 STEFAN KEBEKUS AND SANDOR J. KOVACS

By construction ofixt!, we obtain the extension class as the homology class represented
by theCech cocycle

sa(1) = sp(1) € ker(A)(Uag) = Ny;,_,1a(Uap)

This difference is given by the following sectionNgredM(Uaﬁ) which yields the required
cocycle.

ha h hoc h
(1 o .ya> - (1 +-£ -ya) = ( - ﬁ) Yo € Z1(Ua, N5, 1)

a 9p Yo 9p
That, however, is the same cocycle which we have obtained above in foitng)léof the
classc(L). The proof of Propositio2.2 is therefore finished. O

2.4. The reconstruction of theP!-bundle from a double section. It is a remarkable fact
that the restriction of an ample line bundlec Pic(A) to a double section carries enough
information so that the wholB'-bundleA can be reconstructed. The proof is little more
than a straightforward application of Proposit®R. We are grateful to Ivo Radloff who
showed us how to use extension classes to simplify our original proof.

Notation2.4. Let (A, o) and(A’, o’) be twoP!-bundles with sections ove?. We say that
(A, o) and(A’, o’) areisomorphic pairs (oveB) if there exists a morphism : A — A/,
anisomorphism of pairssuch thaty is a B-isomorphism ofP*-bundles andy o ¢ = o”.
Sometimes we will refer to these pairs by the image of the sectibns(B)), in which
case the meaning idomorphic pairshould be clear.

Theorem 2.5. Given a line bundld. € Pic(A), which is not the pull-back of a line bundle
on B, let&;, andoy, be asiri2.2. Consider the relative degreke Z\ {0} of L, i.e., the in-
tersection number with fibers af If d is coprime tochar(k), then(A, o) and(P(€L), o1)
are isomorphic pairs oveB.

Proof. Let H := Op(Xreq) = J 7. ThenA ~ P(\.H) ando : B — A is the section
associated to the surjection, H — \.(H|s,.,)-
First we would like to prove that. H ~ \.(H]|x). Indeed, consider the sequence,

0—H®J*~J — H— H|g — 0.
We need to prove that,.7 ~ R'\.J ~ 0. However, that follows from considering the
push-forward of the sequence,
0 —J — Opn — Oy

sinceX,Op ~ \.Osx,., ~ Op,andR'\.O ~ 0.

This implies the statement fdr = H, that is, we obtain thatA, o) and (P(Ex), om)
are isomorphic pairs ovds (cf. [Har77 11.7.9]).

In order to finish the proof, we are going to prove t{t€s ), o) and(P(€L), o) are
isomorphic pairs oveB for any L € Pic(A). In fact, it suffices to show that the extension
classes of the following sequences are the same up to a non-zero scalar multiple.

win — Ae(H]s) @ H
0— N n — MlLls) @ LY

red 07

0— Ny — 0

Yred Os

red

(2.6)

Zred Ozred O

Recall thatPic(A) = Z x Pic(B) so that we can writd, € H®! @ \*M for an
appropriateM € Pic(B). By Propositior2.3this implies that the extension classes of the
sequences2(6) are given by (H|x;) andc (H|2?) = d- ¢ (H|x). In particular, they differ
only by the non-zero factaf € k. O
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Warning2.6. The construction of the vector bundfg and Propositioi2.2 use only the
restrictionL|x. It may thus appear that Theoréh® could be true without the assumption
thatL € Pic(A) and that one could allow arbitrary line bundles Pic(X) instead. That,
however, is wrong and counterexamples do exist. Note that the proof of Th2dEerses
the fact thatl is contained irZ x Pic(B) which is not true in general if. € Pic(X) is
arbitrary.

The assumption that be coprime tochar(k) is actually necessary in Theore®E,
as shown by the following simple corollary of Propositi®/g and of the proof of Theo-
remz2.5.

Corollary 2.7. Using the same notation as in Theor2m®, assume that is divisible by
char(k). Then
Ad(Llg) ® LYs,.q = Ny,

red *

‘A@Og

red
3. DUBBIES

Throughout the proofs of Theoreris3 and1.4, which we give in Sectior4.1and4.2
below, we will assume thak contains pairs of minimal rational curves which intersect
tangentially in at least one point. A detailed study of these pairs and their parameter spaces
will be given in the present chapter. The simplest configuration is the following:

Definition 3.1. A dubbyis a reduced, reducible curve, isomorphic to the union of a line
and a smooth conic i®? intersecting tangentially in a single point.

—

Remark3.1.1 The definition may suggest at first glance that one component of a dubby

is special in that it has a higher degree than the other. We remark that this is not so. A
dubby does not come with a natural polarization. In fact, there exists an involution in the

automorphism group that swaps the irreducible components.

Later we will need the following estimate for the dimension of the space of global
sections of a line bundle on a dubby. Let= ¢; U ¢ be a dubby and. € Pic(¢) a
line bundle. We say thak has type(d;, ds) if the restrictions ofL to the irreducible
componentg; and/, have degred; andds,, respectively.

Lemma 3.2. Let ¢ be a dubby and. € Pic(¢) a line bundle of typ€d;,d>). Then
hO(¢,L) > dy + dos.

Proof. By assumption, we have thét,, ~ Op:(d;). Let¢;.¢5 be the scheme theoretic

intersection of; and/s, . : ; — ¢ the natural embedding, atdd = /% (L|,,) fori = 1,2.
Then one has the following short exact sequence:

0—=L—Li®Ly— Op g, — 0.
This implies thath® (¢, L) > x(L) = x(L1) + x(Lz2) — x(O¢, ¢,) = dy + ds. O

3.1. The identification of the components of a dubby.To illustrate the main observation
about dubbies, let us consider a very simple setup firstt letPic(X) be an ample line
bundle, and assume that ¢; U ¢, C X is a dubby where both components are members
of the same connected family of minimal rational curves. In particula,|, will be of
type(d, d), whered > 0. Remarkably, the line bundle induces a canonical identification
of the two components, and/,, at least wher is coprime to the characteristic of the base
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field k. Over the field of complex numbers, the idea of construction is the following: Fix
a trivializationt : L]y — Oy of L on an open neighborhodd of the intersection point
{z} = {1 N £y. Given a pointr € ¢ \ {3, leto; € H°(¢1, L|,,) be a non-zero section that
vanishes atr with multiplicity d. Then there exists aniquesectionoy, € H(ls, L|s,)

with the following properties:

(1) The sectiorv, vanishes at exactly one pointe £5.
(2) The sectiong; ando, agree on the intersection of the components:

o1(2) = 02(2)
(3) The differentials otr; ando, agree at:
U(toor) =9(toos)
for all non-vanishing tangent vectorse 7;, N T,.

The map that associatasto y gives the identification of the components and does not
depend on the choice of

In the following sectiorB.2, we will give a construction of the identification morphism
which also works in the relative setup, for bundles of tyge d») whered; # dy, and in
arbitrary characteristic.

3.2. Bundles of dubbies. For the proof of the main theorems we will need to consider
bundles of dubbies, i.e., morphisms where each scheme-theoretic fiber is isomorphic to a
dubby. The following Proposition shows how to identify the components of such bundles.

Proposition 3.3. Let A : A — B be a projective family of dubbies over a normal bdse
and assume that is not irreducible. Then it has exactly two irreducible components
andA,, bothP!-bundles ove3. Assume further that there exists a line bunklle Pic(A)
whose restriction to a-fiber has typdm, n), wherem andn are non-zero and relatively
prime tochar(k).

If ¥.ea C A1 N Ay denotes the reduced intersection, th&n, is a section ove, and
the pairs(A1, Yreq) @and(As, X,cq) are isomorphic oveB.

Note that the isomorphism given in Propositi®&is not canonical and may not respect
the line bundlel..

Proof of Propositior3.2 The map) is flat because all its scheme-theoretic fibers are
isomorphic. LetA; C A be one of the irreducible components. It is easy to see that
if x € Ay is a general point, ther\; contains the (unique) irreducible component of
Uxz) = A'A(x) that containse. Since) is proper and flatA(A;) = B. HenceA,
contains one of the irreducible componentdpfor all b € B. Repeating the same ar-
gument with another irreducible componefit, one finds that it also contains one of the
irreducible components d, for all b € B. However, they cannot contain the same irre-
ducible component for any € B: In fact, if they contained the same componentofor
infinitely many points$ € B, then they would agree. On the other hand, if they contained
the same component éf for finitely many point® € B, thenA would have an irreducible
component that does not domindbe This, however, would contradict the flathess)of
HenceA; U A, = A. They are botlP!-bundles over3 by [Kol96, Thm. 11.2.8.1].

Let> := A; N A, be the scheme-theoretic intersection. Sinds a bundle of dubbies
and B is normal, it is clear that its reductio;,.q iS a section, and thaX is its first
infinitesimal neighborhood in eitheY; or A,. In this setup, the isomorphism of pairs is
given by Theorer2.5. O
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3.3. The space of dubbies.In addition to the space of rational curves, which we use
throughout, it is also useful to have a parameter space for dubbies. For the convenience of
the reader, we will first recall the construction of the former space very briefly. The reader
is referred tolKol96, chapt. 11.1] for a thorough treatment.

3.3.1. The space of rational curvesRecall that there exists a scheriem,,;, (P!, X)
whose geometric points correspond to morphisids — X that are bira-
tional onto their images. Furthermore, there exists an “evaluation morphism”:
p : Hompi (P, X) x P! — X. The groupPGL, acts on the normalization
Hom?, (P!, X), and the geometric quotient exists. More precisely, we have a commu-
tative diagram

Hom}, (P!, X) x P! ——— Univ'®(X) ——= X

i |

Hom, (P!, X) —— RatCurves"(X)

whereu andU are principalPGL; bundles,r is aP!-bundle and the restriction of the
“evaluation morphism to any fiber ofr is a morphism which is birational onto its image.
The quotient spacBatCurves”(X) is then the parameter space of rational curves{on

The letter ‘h” in RatCurves™ may be a little confusing. It has nothing to do with the
dimension ofX and it's not a power. It serves as a reminder that the parameter space is the
normalization of a suitable quasiprojective subset of the Chow variety.

It may perhaps look tempting to define a space of dubbies in a similar manner, as a quo-
tient of the associated Hom-scheme. However, since geometric invariant theory becomes
somewhat awkward for group actions on non-normal varieties, we have chosen another,
elementary but somewhat lengthier approach. The space of dubbies will be constructed as
a quasi-projective subvariety of the space of ordered pairs of pointed rational curves, and
the universal family of dubbies will be constructed directly.

3.3.2. Pointed rational curveslt is easy to see thakC,(X) = Univ™(X) naturally
parameterizes pointed rational curvesXrand the pull-back of the universal family
Univl;c (X) = RC'(X) XRatCurves“(X) UninC(X)

is the universal family of pointed rational curves ol®&C,(X). The identification mor-
phismRC,(X) — Univ™(X) and the identity map oRC,(X) gives a section of this
universal family:

Univi®(X) Univ'(X)
=
RC,(X) —— RatCurves"(X)
3.3.3. Ordered pairs of pointed rational curveShe product
RC2(X) = RC.(X) x RC4(X) naturally parameterizes pairs of pointed rational

curves. We denote the projections to the two factorgpy RC2(X) — RC,.(X) for
i = 1, 2. Then the universal family will be given as the disjoint union

Univi>?(X) = (RC3(X) x,, Univi(X)) U (RCZ(X) x,, Univi(X)) .
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The two copies of the section : RCo(X) — Univ,®(X) induce two sections of this
family, one for each component of the union:

Unive®?(X)

Univie(X) or 5| o2 Univie(X)
1 N

" RCZ(X) .
RCW(X) RC. (X)

3.3.4. The space of dubbiesConsider the evaluation morphisrh : Unive®?(X) — X.
The associated tangent Mg’ restricted to the relative tangent sh@gf; «-.> (X)/ RC2(X)
gives rise to a rational map

772 Univi®?(X) --» P(TY).
We define a quasiprojective variety, the space of dubbies,
Dubbies” (X) := normalization of{¢ € RCZ(X) | 7"? is defined atr; (¢)
and atoy(£), andr™% (o1 (£)) = 772 (02(£))}.

We will often consider pairs of curves such that both components come
from the same familyH < RatCurves®(X). For this reason we define
w2 @ Dubbies®(X) — RatCurves”(X) x RatCurves”(X), the natural forgetful
projection morphism, and

Dubbies™ (X)| g := Dubbies™(X) N7y ' (H x H).

Proposition 3.4. Assume thatd{ C RatCurves™(X) is a proper family of immersed
curves. TheMubbies” (X)| g is also proper.

Proof. Since the tangent map;™?2, is well-defined ato;(¢) and oo(¢) for every
(€ RC2(X) N 7wy Y(H x H),

Dubbies”(X) = normalization of{¢ € RCZ(X) | 7°¢2(c1(¢)) = 7°“*(02(¢))},
which is clearly a closed subvariety of the proper variefy (H x H). O

The next statement follows immediately from the construction and from the universal
property ofRatCurves™(X).

Proposition 3.5. Let#; and/s C X be rational curves with normalizations
m:[P’lzgia&CX.

If Tn; have rank 1 at the poirlD : 1] € P! for i = 1,2, and if the images of the tangent
morphisms agree,

Image(Tn11j0:1)) = Image(Tnz2|j0:1]) € Tx,
then there exists a poititc Dubbies®(X) such thap—'(¢) = ¢, U fs.
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If H C RatCurves™(X) is a subfamily, and both; correspond to points off, then we
can find such ai in Dubbies”(X)|g. O

Remark 3.5.1 Since RC2(X) is the space of ordered pairs of curves, the space
Dubbies®(X) is really the space of 'ordered dubbies’. In other words, for each pair of
rational curves with tangential intersection, there are at least two poifdsleifies™ (X )
representing it.

3.3.5. The universal family of dubbiedn order to show thaDubbies™(X) is a space of
dubbies indeed, we need to construct a universal family, which is a bundle of dubbies in
the sense of sectid® 2. To this end, we will factor the universal evaluation morphism via

a reducible family of dubbies.

Proposition 3.6. The evaluation morphism,
v : Univi®?(X) Xgez(x) Dubbies”(X) — U C X x Dubbies"(X),

=:U, decomposes as; UU>

factors as follows.
U R A U
B bundle of| .. »
dubbies ”
two disjoint bundle of two curves with

Pl-bundlest/; U U, Dubbies™ (X) complicated intersection

(3.1)

For every irreducible componed® C Dubbies®(X), the preimage\p := p~(D) is
reducible, and is a bundle of dubbies in the sense that for every closedbpeir®, the
fiber p~1(b) is isomorphic to a dubby.

Remark3.6.1 If ¢ € Dubbies®(X) is any point, then the two corresponding curves in

X intersect tangentially in one point, but may have very complicated intersection at that
point and elsewhere. The factorization of the evaluation morphism should therefore be
understood as a partial resolution of singularities, as shown in {&idire

Proof. As a first step we will construct the spade Because the evaluatiaris a finite,
hence affine, morphism, it seems appropriate to construct a suitable suldstieafO,
which is a coherent sheaf 6f;;-modules and set : A = SpedA) — U.

Letsy C U; anda, C U, be the images of the pullbacks of the canonical sections,
andos, constructed ii8.3.3 In order to construct, we will need to find an identification
of their first infinitesimal neighborhoods; andég.. Since. is separable, it follows di-
rectly from the construction that, anda, map isomorphically onto their scheme-theoretic
images.(51) and«(62). Again, by the definition oDubbies”(X), these images agree:
1(61) = 1(d2) and we obtain the desired identification,

¥ :01 — O9.
Let
i1:01 — U; and i2252—>02
be the inclusion maps and consider the sheaf morphism

0= L*(Zf& — 7# o ﬁ;) 1105 — 1,05,
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FIGURE 3.1. A partial resolution of singularities

The sheaf
A = ker(p)

is thus a coherent sheaf 6f;,-modules. As it was planned above, defihe= Sped.A).
The existence of the morphismsandg and that = (5 o « follows from the construction.
It remains to show thak is a bundle of dubbies. Léte Dubbies”(X) be a closed point.
ReplacingDubbies™(X) with a neighborhood of and passing to a finite, unbranched
cover if necessary, and by abuse of notation still denoting iDbybies™(X), we can
assume that

(1) the varietyDubbies®(X) is affine, sayDubbies®(X) ~ Spec R,

(2) theP'-bundlesl; = P(p.Og. (5:)¥), fori = 1,2 are trivial, and

(3) there exists a Cartier divisor C U such that=!(7) = 7, U 75, wherer; C U;
are sections that are disjoint from.

We can then find homogeneous bundle coordingtgs =] on U, and[y, : y1] on Us
such that
71 = {([zo : 21],b) € Uy | o = 0}, 1 = {([zo : 21],b) € Uy | 1 = 0},
g2 ={(lyo : 91],0) € Ua|yo = 0}, and 2 = {([yo : v1],b) € Uz |n = 0}.
If we set
Up:=U\ (11 Uma),

then the imagé/, := «(U) is affine, and we can write the relevant modules as

OU(UO) ~ R® (k[zo] @ E[yo])
O3, (Uo) = R @ Klao) /(23).

Os,(Uo) ~ R ® klyol/(y3)-



ARE RATIONAL CURVES DETERMINED BY TANGENT VECTORS? 13

Ar X

prioB
- >

FIGURE 4.1. Proof of Theoreni.4

Adjusting the bundle coordinates, if necessary, we can assume that the identification mor-
phism~# (Up) : Os,(Ug) — Os, (Up) is written as

Y#(Uo): R@klyl/(y5) — R k[zo]/(27)
7 ® Yo — r & xo.

In this setup, we can find the morphisprexplicitly:

e(Uo): R® (k[zo] ® klyo]) —  R® klxo]/(x)
r® (f(®0),9(y0)) +— 7@ (f(z0) — g(w0))-

Therefore, as aRR-algebraker(y)(Uy) is generated by the elements= 1 ® (x0, yo)
andv := 15 ® (22,0), which satisfy the single relation(u? — v) = 0. Thus

ker()(Us) = R ® kfu, 0] /(v(u® = v)).

In other words3~1(Up) is a bundle of two affine lines ovédubbies® (X ), meeting tan-
gentially in a single point.

It follows directly from the construction ofd that « is an isomorphism away from
71 Uas. The curvep—!(¢) is therefore smooth outside pf * (¢) N 31 (Uy), and it follows
thatp—!(¢) is indeed a dubby. This shows thiis a bundle of dubbies.

To finish the proof, we need to verify thaty is reducible. To that end, recall from
section3.3.2 that the universal family/|p = 5~ !(D) is the disjoint union of twdP, -
bundles. Sincev is isomorphic away frono; U 74, it follows thatAp = a(U|D) is
reducible as claimed. This ends the proof. |

4. PROOFS OF THEMAIN THEOREMS

4.1. Proof of Theorem/1.2 The assertion that all curves associated withare smooth
at a general point € X follows immediately from the assumption that none of the curves
¢ € H is cuspidal, and byKeb02) thms. 2.4(1) and 3.3(1)]. It remains to show that no
two curves intersect tangentially.

We will argue by contradiction and assume that we can find afpairé; U 4, C X
of distinct curves/; € H that intersect tangentially at The pair/ is then dominated
by a dubby whose singular point mapsitolLoosely speaking, we will move the point of
intersection to obtain a positive-dimensional family of dubbies that all contain the point
—see figurdl. 1
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Setup. To formulate our setup more precisely, we will use the notation introduced in di-
agram [8.1) of Proposition3.6 and recall from PropositioB.4 that Dubbies™(X)|g is
proper. Recall further that the universal familyis a subset/ C X x Dubbies”(X) and

let) := pryoc: U — X be the canonical morphism. The assumption that for every general
pointz € X, there is a pair of curves intersecting tangentially aan be reformulated as

g0 01(Dubbies”(X)|g) = 70 go(Dubbies®(X)|g) = X
Let D C Dubbies”(X)|y be an irreducible component such that
jooi(D)=j00:(D) =X
holds. By abuse of notation, we will dendt®, = (Up), U (Uz)p by U = U, U Us. Fix
a closed point € D and consider the intersection numbers
dy =g (L)- (31 ()NTh) and dy =57 (L) - (5" () N Ua)

Renumbering/; and Us, if necessary, we may assume without loss of generality that
di > ds. In this setup it follows from the upper semi-continuity of the fiber dimension that
(sl,) " () contains an irreducible curva which intersectsr; (D) non-trivially and is
not contained in

S := {y € U | is not an isomorphism af}
SetT := p(m). After a base change, if necessary, we may assumé&tise normal curve
and consider the restrictions of the morphisms constructed in Propa3i€on

Ur —5>Ar Ur X

Using Keb02a thm. 3.3.(1)], we find that, is generically injective ovef’, and therefore
is a section. LeUT 1= (Ul)T andUT 9 = (UQ)T It follows directly from the reducibil-
ity assertion of PropositioB.€ A7 is reducible, and it follows from Propositicdh3 that

(Ur.1,01(T)) and(Ur2, 02(T)) are isomorphic pairs ovef. Lety : Ur, — Ur, be an

isomorphism and consider the section= () C UT’Q

The contraction of». With the notation above, Theorein?3 follows almost immediately
from the following observation.

Lemma 4.1. The morphism contracts the sectiom; to z, i.e., 7 C 37 !(z).

Notice that this finishes the proof of Theordn® Indeed, Lemma&.1 implies that a
general point € T corresponds to a paif = ¢; 1 U{; o of two distinct curves that intersect
atx. The curvel; is then singular at, a contradiction to the fact that ¢ S.

Proof Lemmat.1. As a first step, we show thatcontractsr, to some poiny € X. The
proof relies on a calculation of intersection numbers on the ruled surfagesindUr o.
Recall the basic fact that

Num(Ur1) =Z-01(T) ®Z - Fyy
whereFy ; is a fiber ofﬁﬁT‘1 : UTJ — T'. A similar decomposition holds fd]~7vT72. Since
71 IS a section, we have the numerical equivalence,
n=o1(T)+d-Fy,
whered is a suitable integer. Sineemapso; (T') isomorphically ontaro(T'), we obtain a

similar equation ofi/r 5,
T =02(T)+d- Fya.
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Next take the ample line bundle € Pic(X) and set
dy := 7" (L) - 01(T) = 57 (L) - 02(T).

These two numbers are indeed equal since the evaluation morphism identifies the images
of the two sections (T") ando2 (7). Now we can write the intersection numbers as

J(L) -2 =5 (L) (02(T) + d - Fy)

—dytd-do=(dy+d-di)+d-(ds—dy)
—_———
=7*(L)-11=0

=d-(dg—dy) <0

SinceL is ample, this shows thatr) is a point,y € X.

It remains to prove that = y. In order to see that, it suffices to recall two facts. First,
as it was already used above, the evaluation morphism identifies the images of the two
sectionss; (T') andoy(T). Second, we know that and the canonical sectian C A;
intersect. Let € p(m N oy (T)) be a closed point. The two sectionsandoy(T) will
then also intersect, € p(m, N o2(T)) and we obtain

z=y(m)=3mNo(T)Np (1)
=) Noa(T)Np~ ' (1) =y.
Lemma4.1is thus shown. O

4.2. Proof of Theorem(1.4. Let H C RatCurves™(X) be as in Theorerfh.4 We assume
without loss of generality that all irreducible componentdioflominateX . Fix an ample
line bundleL € Pic(X) and letH’ C H be an irreducible component such that for a
general curve& € H’ the intersection numbek.C is minimal among all the intersection
numbers ofZ with curves fromH. Finally, fix a rational curv€ C X that corresponds to
a general point of{’.

The proof of Theorerid.4 now follows very much the lines of the proof of Theoré&nd
from the previous section. The main difference to the previous argument is that we have
to work harder to find the famil{’, as the properness @ubbies”(X)|y is no longer
automatically guaranteed. Over the complex number field, however, the following lemma
holds, which replaces the properness assumption in our context.

Lemma 4.2. Assume thatX is a complex-projective manifold, and I8t C X be a
subvariety of codimensiotbdimy S’ > 2. If C € H is a curve that corresponds to a
general point offf’, thenC and .S’ are disjoint:C N .S’ = ().

Proof. [Kal96, Chapt. II, Prop. 3.7 and Thm. 3.11] O

Corollary 4.3. Under the assumptions of Theordm, if C € H' is a general curve, and
if codimyx D > 2, then

He:={C'eH|CNC' #0}CH
is proper, and the associated curves are immersed afbrig particular, C is immersed.
Proof. It suffices to note that is disjoint from bothS andD. O

Before coming to the proof of Theoret, we give a last preparatory lemma concern-
ing the dimension of the locu® of cusps.

Lemma 4.4. If D C X is a divisor, then the subfamil§Z®“sP c H of cuspidal curves
dominatesX.
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FIGURE 4.2. Proof of Theoreni.4

Proof. Argue by contradiction and assume that all cuspidal curve$%fiP are contained
in a divisor. The total space of the family of cuspidal curves is then at (dastD + 1)-
dimensional, so for a general pointe D there exists a positive dimensional family of
cuspidal curves that containand are contained ifv. That, however, is impossible: it
has been shown itKeb024 Thm. 3.3] that in the projective variet), a general point is
contained in no more then finitely many cuspidal curves. |

Setup of the proofFor the proof of Theorerd.4, we will again argue by contradiction.
By Lemma4.4 this amounts to the assumption thaits not generically injective, and that
codimx D > 2. By Corollary4.3, this implies that the space of curves which intergkist
proper and all associated curves are immersed alo&inceC was a general curve, the as-
sumptions also imply that for a general paing C, there exists a poirite Dubbies”(X)
corresponding to a pair of marked curnves: /1 N ¢, such that, = C and/; intersects’
tangentially atz, i.e., Image(7(o1(t))) = P(T¢|Y) wherer : U — P(TY.) is the tangent
morphism from the introduction. Hence we can find a proper clirve Dubbies™(X)
with associated diagram

such that/; decomposes d$r = Ur; U Ur o, where

Ury ~CxT~P' xT,
and wherer|,,, () dominate?(7y).
End of proof. We are now in a situation which is very similar to the one considered in the
proof of Theoreml.2 we will derive a contradiction by calculating certain intersection
numbers orUz ; andUr 5.

As afirst step, remark thaf; ; maps to a surface it It follows thaty*(L) is nef and
big onUr ;.
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Secondly, sincéfm is isomorphic to the trivial bund®! x T, we have a decomposition
Num(ﬁﬂg) ~7- FH72 (&) 7 - Fv72

where F'r o is the numerical class of a fiber of the mé[@,Q — P! and Fy» that of a
fiber of the mafd/y, — T. Likewise, since the paifd/r1,01(T)) and(Ur 2, 02(T')) are
isomorphic, let

Num(UT’l) ~7- FHJ D Z- FV,l
be the corresponding decomposition. difdenotes the degree of the (finite, surjective)
morphism

joor=j002:T —=C,

then it follows directly from the construction that the curves of tyfe, intersectos(T')
with multiplicity d. We obtain that

O—Q(T)EFH,2+d'FV72 and thus Ul(T)EFH71+d'Fv_’1.
To end the argumentation, let
dy = j*(L) . FV71 and dj = ]*(L) . FV’Q

In particular, sincg*(L).Fy 2 = 0, we have thay* (L) - 02 = d - da. Recall thatd’ ¢ H
was chosen so thd; > d, and write:

J'(L)-Fgy=7(L) (01(T) —d- Fy,)
—d-dy—d-d
<0.

Becauselr; is covered by curves which are numerically equivalenfip, that con-
tradicts the assumption that(L)|5, , is big and nef. The proof of Theorefn4 is thus
finished. U

5. APPLICATIONS

5.1. Irreducibility Questions. Let H C RatCurves"(X) be a maximal dominating fam-
ily of rational curves of minimal degrees on a projective varigtyHow many components
canH have? If we pick an irreducible componeiiit C H and fix a general point € X,
does it follow that
H :={¢teH'|z e/}

isirreducible? These questions have haunted the field for quite a while now, as the possibil-
ity that H, might be reducible poses major problems in many of the proposed applications
of rational curves to complex geometry —see the discussiodwapD]].

Itis conjecturediHwa01, chap. 5, question 2] that the answers to both of these questions
are affirmative for a large class of varieties. There exists particularly strong evidekce if
is a complex manifold and if the dimension Hf, is not too small. Theorei.2 enables
us to give a partial answer.

Theorem 5.1. Under the assumptions of Theordng, if X is a complex manifold and if
for a general pointt € X, and for all irreducible componentd’ c H

dimX —1

5

thenH, is irreducible. In particular,H is irreducible.

dim H, >
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The main technical difficulty in proving Theorebl lies in the fact that the closed
points of H are generally not in 1:1-correspondence with actual rational curves, a pos-
sibility that is sometimes overlooked in the literature. As a matter of fact, this corre-
spondence is only generically injective, and it may well happen that two or more points
of H correspond to the same curfeC X. This is due to the very construction of the
spaceRatCurves”(X): recall from sectior.3 that RatCurves™(X) is constructed as
the quotient of thenormalizationof Homy,;, (P!, X). While Homy, (P!, X) is in 1:1-
correspondence with morphisn®, — X, that are birational onto their imnage, the nor-
malization morphism

Hom,, (P!, X) — Homy;, (P, X),
need not be injective. For complex manifolds, however, we have the following workaround.
Lemma 5.2. Under the assumptions of Theor&d, letz € X be a general point and set
H,={{eH|zel}
Then the closed points &f, are in 1:1-correspondence with the associated curvek in

Proof. Since z is a general point and since we have picked a fixed comporiéht,
all rational curves through are free by the proof of{MM92, thm. 1.1]. The space
Homy,;, (P!, X) is therefore smooth at every poifitc Homy,;, (P*, X) whose image con-
tains the pointr by [Kol96, thm. 11.1.7]. The normalization morphism

Hom!, (P!, X) — Homp;, (P!, X),

is thus isomorphic in a neighborhood pf SinceHomy,;,. (P!, X) is in 1:1 correspondence
with morphismgP' — X, the claim follows. g

This enables us to prove Theor&ml

Proof of Theorers.1. Choose a general point € X, and letr : H --» P(Ty) be the
tangent morphism described in the introduction. Since all curves associated/ yihe
smooth,r restricts to a regular morphism

Te : Hy — P(T¥ ).

This morphism is known to be finit&eb02a thm. 3.4]. By Theorerid.3, 7, is injective.
Now assume thakl,; is not irreducible H, = H, 1 U... U H, ,. Sincer, is finite, we
have that

dim(7,(Hz 1)) + dim(7,(Hy 2)) > dim X — 1 = dim P(T'y|,)
Thus, by Har77, thm. 1.7.2],
Toe(Hy1) N7 (Hy2) # 0.

It follows that 7 is not injective, a contradiction. O

Lemmab.2raises the following question.

Question 5.3. Are there other conditions than smoothness dexvhich guarantee that
closed points of/,. are in 1:1-correspondence with rational curves?
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5.2. Automorphism groups of projective manifolds and their spaces of rational
curves. The setup of Theoref.1 naturally generalizes the notion of a prime Fano mani-
fold, i.e., one that is covered by lines under a suitable embedding. Some of the results that
have been obtained for prime Fanos hold in the more general setup of Th&d:ewe

give one example.

For any complex varietyX, let Aut, (X') denote the maximal connected subgroup of the
group of automorphisms. By universal properties, an automorphism of a complex variety
induces an automorphism of the sp&&tCurves"(X). It might be interesting to note
that in our setup the converse also holds.

Theorem 5.4. In the setup of Theorel], if bo(X) = 1, then the groupsg\uty(X) and
Auty(H) coincide.

Proof. The theorem follows from Theoref1 and HM02, Thm. 1] —observe that the
proof of [HM02, Thm. 1] works without the assumption thétis a dominating family of
rational curves of minimal degrees because we assume het# tlkgiroper. d

5.3. Contact Manifolds. Let X be a projective contact manifold ov€r, e.g. the twistor
space over a Riemannian manifold with Quaternionic-Kéhlerian holonomy group and pos-
itive curvature. We refer taeb01¢ and the references therein for an introduction and for
the relevant background information.

If X is different from the projective space, it has been showrKebD1q that X is
covered by a compact family of rational curvEsC RatCurves”(X) such that for a gen-
eral pointz, all curves associated with points i, are smooth. Thus, the assumptions
of Theorem1.4 are satisfied, and is generically injective. This has been shown previ-
ously in Keb01lj using rather involved arguments which heavily rely on obstructions to
deformations coming from contact geometry.

REFERENCES

[BBIOO] L. Badescu, M.C. Beltrametti and P. lonescu. Almost-lines and quasi-lines on projective manifolds.
In T. Peternell and F.O. Schreyer, editoBmplex Analysis and Algebraic Geomefppges 1-27.
de Gruyter, 2000.

[CMSBO00] K. Cho, Y. Miyaoka, and N.l. Shepherd-Barron. Characterizations of Projective Spaces and Applica-
tions. Preprint, October—December 2000.

[Eis95] D. EisenbudCommutative Algebra with a View Toward Algebraic Geometojume 150 ofGradu-
ate Texts in MathematicSpringer, 1995.

[Har77]  R. HartshorneAlgebraic Geometrywolume 52 ofGraduate Texts in MathematicSpringer, 1977.

[Hwa01] J.-M. Hwang. Geometry of Minimial Rational Curves on Fano Manifolds ICTP Lecture
Notes Series Volume VI (ISBN 92-95003-09-8), December 2001. Available on the internet at
http://www.Ictp.trieste.it/ ~pub off/lectures/vol6.html

[HM02]  J.-M. Hwang and N. Mok. Automorphism groups of the spaces of minimal rational curves on Fano
manifolds of Picard number 1, Preprint, to appear.

[KebOla] S. Kebekus. Rationale Kurven auf projektiven  Mannigfaltigkeiten (German).
Habilitationsschrift, February 2001. Available from the author's home page at
http://btm8x5.mat.uni-bayreuth.de/ ~kebekus

[Keb01b] S. Kebekus. Lines on Contact Manifolds II. LANL-Preprint math.AG/0103208, 2001.

[Keb01lc] S. Kebekus. Lines on contact manifoldsReine Angew. Maitb39:167—-177, October 2001.

[Keb02a] S. Kebekus. Families of singular rational curvésAlg. Geom).11:245-256, 2002.

[Keb02b] S. Kebekus. Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron. In
|. Bauer, F. Catanese, Y. Kawamata, T. Peternell, and Y.-T. Siu, ed@oraplex Geometry, Col-
lection of Papers dedicated to Hans Graygrages 147—-156. Springer, 2002.

[KMM92] J. Kollar, Y. Miyaoka, and S. Mori. Rational Connectedness and Boundedness of Fano Manifolds.
J. Diff. Geom, 36:765-769, 1992.


http://www.ictp.trieste.it/~pub_off/lectures/vol6.html�
http://btm8x5.mat.uni-bayreuth.de/~kebekus�

20 STEFAN KEBEKUS AND SANDOR J. KOVACS

[Kol96] J. Kollar.Rational Curves on Algebraic Varietiegolume 32 ofErgebnisse der Mathematik und ihrer
Grenzgebiete 3. Folg&pringer, 2nd edition, 1996.

STEFAN KEBEKUS, MATHEMATIK VIII, U NIVERSITAT BAYREUTH, 95440 B\YREUTH, GERMANY
E-mail addressstefan.kebekus@uni-bayreuth.de
URL: |http://btm8x5.mat.uni-bayreuth.de/ ~Kebekus

SANDOR KOVACS, UNIVERSITY OF WASHINGTON, DEPARTMENT OF MATHEMATICS, Box 354350,
SEATTLE, WA 98195, U.S.A.

E-mail addresskovacs@math.washington.edu

URL: |http://www.math.washington.edu/ ~kovacs


mailto:stefan.kebekus@uni-bayreuth.de�
http://btm8x5.mat.uni-bayreuth.de/~kebekus�
mailto:kovacs@math.washington.edu�
http://www.math.washington.edu/~kovacs�

