Corrections to Introduction to Smooth Manifolds (Second Edition)

by John M. Lee
April 7, 2024
(8/8/16) Page 6, just below the last displayed equation: Change $\varphi([x])$ to $\varphi_{n+1}[x]$, and in the next line, change x^{i} to x^{n+1}. After "(Fig. 1.4)," insert "with similar interpretations for the other charts."
(8/8/16) Page 7, Fig. 1.4: Both occurrences of x^{i} should be x^{n+1}.
(12/19/18) Page 9, proof of Theorem 1.15: In the second line of the proof, replace "For each j " with "For each $j \geq 0$." Then in the fourth-to-last line, replace "positive integers" by "nonnegative integers."
$(1 / 15 / 21)$ Page 13, line 1: Delete the words "and injective."
(1/18/21) Page 20, Example 1.31: There are multiple errors in this example. Replace everything after the first two sentences by the following: For each $i=1, \ldots, n+1$, let $\left(U_{i}^{ \pm} \cap \mathbb{S}^{n}, \varphi_{i}^{ \pm}\right)$denote the graph coordinate charts we constructed in Example 1.4. For any distinct indices i and j and any choices of \pm signs, the transition maps $\varphi_{i}^{ \pm} \circ\left(\varphi_{j}^{ \pm}\right)^{-1}$ and $\varphi_{i}^{ \pm} \circ\left(\varphi_{j}^{\mp}\right)^{-1}$ are easily computed. For example, in the case $i<j$, we get the following formula for all u in the domain of $\varphi_{i}^{+} \circ\left(\varphi_{j}^{+}\right)^{-1}$:

$$
\varphi_{i}^{+} \circ\left(\varphi_{j}^{+}\right)^{-1}\left(u^{1}, \ldots, u^{n}\right)=\left(u^{1}, \ldots, \widehat{u^{i}}, \ldots, \sqrt{1-|u|^{2}}, \ldots, u^{n}\right)
$$

(with u^{i} omitted and the square root replacing u^{j}), and similar formulas hold in the other cases. When $i=j$, the domains of φ_{i}^{+}and φ_{i}^{-}are disjoint, so there is nothing to check. Thus, the collection of charts $\left\{\left(U_{i}^{ \pm} \cap \mathbb{S}^{n}, \varphi_{i}^{ \pm}\right)\right\}$is a smooth atlas, and so defines a smooth structure on \mathbb{S}^{n}. We call this its standard smooth structure.
(6/23/13) Page 23, two lines below the first displayed equation: Change "any subspace $S \subseteq V$ " to "any k dimensional subspace $S \subseteq V$."
(9/15/19) Page 24, first full paragraph, fourth line: Change "any subspace S " to "any k-dimensional subspace S."
(12/19/18) Page 26, first line: Change $U \cap \varphi^{-1}\left(\operatorname{Int} \mathbb{H}^{n}\right)$ to $\varphi^{-1}\left(\operatorname{Int} \mathbb{H}^{n}\right)$.
(12/19/18) Page 27, last paragraph, sixth line: Change $\tilde{U} \cap \mathbb{H}^{n}$ to $\tilde{U} \cap U$.
$(2 / 22 / 15)$ Page 29, proof of Theorem 1.46, second paragraph, line 4: Change $\varphi(U \cap V)$ to $\psi(U \cap V)$.
$(10 / 8 / 15)$ Page 30, Problem 1-6: Interpret the formula for F_{s} to mean $F_{s}(0)=0$ when $s \leq 1$.
$(1 / 27 / 18)$ Page 31, Fig. 1.13: Change $\left\{x^{n}=0\right\}$ to $\left\{x^{n+1}=0\right\}$.
$(3 / 12 / 18)$ Page 31, Problem 1-11, next-to-last line: Change \mathbb{S}^{n} to $\mathbb{S}^{n} \backslash\{N\}$.
(4/25/17) Page 45, second paragraph: Replace the last sentence of that paragraph with the following: "If N has empty boundary, we say that a map $F: A \rightarrow N$ is smooth on \boldsymbol{A} if it has a smooth extension in a neighborhood of each point: that is, if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth map $\widetilde{F}: W \rightarrow N$ whose restriction to $W \cap A$ agrees with F. When $\partial N \neq \varnothing$, we say $F: A \rightarrow N$ is smooth on A if for every $p \in A$ there exist an open subset $W \subseteq M$ containing p and a smooth chart (V, ψ) for N whose domain contains $F(p)$, such that $F(W \cap A) \subseteq V$ and $\left.\psi \circ F\right|_{W \cap A}$ is smooth as a map into \mathbb{R}^{n} in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point)."
(7/23/14) Page 45, last displayed equation: The first $=$ sign should be \subseteq.
(9/15/19) Page 46, line 9: Change "on an open subset" to "on a nonempty open subset."
(6/20/18) Page 47, proof of Theorem 2.29, second paragraph: Replace the first sentence of the paragraph by "Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth bump function that is positive in $B_{1}(0)$ and zero elsewhere."
(2/13/22) Page 49, Problem 2-10(c): Change "an isomorphism" to "a bijection."
$(1 / 20 / 22)$ Page 54, just after the first sentence: Insert"(The integral is a smooth function of x by iterative application of Theorem C.14.)"
(11/17/12) Page 56, first displayed equation: Change $d \iota(v)_{p}$ to $d \iota_{p}(v)$.
(1/21/21) Page 56, just below the last displayed equation: Replace "the last two equalities follow" by "the last equality follows."
(6/9/19) Page 58, proof of Lemma 3.11, next-to-last line: Change \mathbb{H}^{n} to Int \mathbb{H}^{n}.
(1/26/15) Page 68, proof of Proposition 3.21: Insert the following sentence at the beginning of the proof: "Let $n=\operatorname{dim} M$ and $m=\operatorname{dim} N . "$ Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change F^{n} to F^{m} (twice).
(11/17/12) Page 70, two lines above Corollary 3.25: Change "Proposition 3.23" to "Proposition 3.24."
(3/5/15) Page 76, Problem 3-8: Add the following remark: "(For $p \in \partial M$, we need to allow curves with domain $[0, \varepsilon)$ or $(-\varepsilon, 0]$ and to interpret the derivatives as one-sided derivatives.)"
(10/23/18) Page 78, proof of Prop. 4.1, third and fourth lines: Change $m \times n$ to $n \times m$ (twice).
$(11 / 9 / 16)$ Page 79 , proof of Theorem 4.5, fourth line: Change $\widehat{F}(p)$ to $\widehat{F}(0)$.
(12/12/21) Page 82, line 4 from the bottom: Change "This is a diffeomorphism onto its image" to "This is an open map and a diffeomorphism onto its image."
(12/12/21) Page 83, proof of Theorem 4.14, line 8: Change "no open subset" to "no nonempty open subset."
(5/4/13) Page 96, Problem 4-3: This problem probably needs a better hint. First, to get a good result, you'll have to add the assumption that $\operatorname{ker} d F_{p} \nsubseteq T_{p} \partial M$. After choosing smooth coordinates, you can assume $M \subseteq \mathbb{H}^{m}$ and $N \subseteq \mathbb{R}^{n}$, and extend F to a smooth function \widetilde{F} on an open subset of \mathbb{R}^{m}. If $\operatorname{rank} F=r$, show that there is a coordinate projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ such that $\pi \circ \widetilde{F}$ is a submersion, and apply the rank theorem to $\pi \circ \widetilde{F}$ to find new coordinates in which \widetilde{F} has a coordinate representation of the form $\widehat{F}(x, y)=(x, R(x, y))$. Then use the rank condition to show that $\left.R\right|_{M}$ is independent of y.
$(12 / 22 / 21)$ Page 100, first sentence: At the end of the sentence, change "smooth embeddings" to "smooth embeddings of smooth manifolds."
(9/8/15) Page 100, proof of Proposition 5.4, next-to-last line: Change "It a homeomorphism" to "It is a homeomorphism."
(7/8/19) Page 104, line below the proof of Theorem 5.11: Change "See Theorem 5.31" to "See Problem 5-24." [Problem 5-24 is a new problem, described later in this list. Theorem 5.31 is not appropriate in this situation because it applies only to manifolds without boundary.]
(6/9/19) Page 105, line 4 from the bottom: Change F to Φ.
(11/9/16) Page 112, Fig. 5.10: Interchange the labels M and N on the figure, to be consistent with the notation in Theorem 5.29.
(5/5/22) Page 113, line 6: Change the definition of $\tilde{\psi}$ to $\tilde{\psi}=\left.\pi \circ \psi\right|_{V_{0}}$. After the end of that sentence, insert the following: "To see that $\tilde{\psi}$ is a smooth coordinate map, let $i: V \hookrightarrow M$ be the inclusion map. Note first that for each $q \in V_{0}, x^{k+1}, \ldots, x^{n}$ are all constant on the image of i, so the image of $d i_{q}$ is contained in the span of $\partial / \partial x^{1}, \ldots, \partial / \partial x^{k}$. Since $d i_{q}$ is injective and its image has trivial intersection with $\operatorname{Ker} d \tilde{\psi}_{q}$, it follows that $d \tilde{\psi}_{q} \circ d i_{q}$ is injective, so for dimensional reasons it is an isomorphism. Thus $\tilde{\psi} \circ i$ is a local diffeomorphism by the inverse function theorem. Since it is bijective from V_{0} to its image, it is a diffeomorphism and hence a smooth coordinate map for V."
(9/15/19) Page 118, Fig. 5.13: Change N to v.
(9/20/22) Page 119, third line: Starting in the middle of that line, replace the rest of the proof with the following: "For each α such that $p \in U_{\alpha}$, we have $f_{\alpha}(p)=0$ and $v\left(f_{\alpha}\right)=v^{n}>0$ by Proposition 5.41. Thus

$$
v(f)=\sum_{\alpha}\left(f_{\alpha}(p) v\left(\psi_{\alpha}\right)+\psi_{\alpha}(p) v\left(f_{\alpha}\right)\right)
$$

For each α, the first term in parentheses is zero and the second is nonnegative, and there is at least one α for which the second term is positive. Thus $v(f)>0$, which implies that $d f_{p}(v)=(v f) d /\left.d t\right|_{f(p)} \neq 0$, where t is the standard coordinate on \mathbb{R}.
(7/15/15) Page 120, proof of Proposition 5.46: At the beginning of the proof, insert this sentence: "Let $F: D \hookrightarrow$ M denote the inclusion map."
(7/21/18) Page 121, line 5: Change x^{m} to x^{n}.
(9/15/19) Page 123, Problem 5-6: Add the assumption that $m>0$.
(7/8/19) Page 124: At the end of the page, add a new problem:
$5-24$. Suppose M is a smooth manifold with boundary, N is a smooth manifold, and $F: N \rightarrow M$ is a smooth map whose image is contained in ∂M. Show that F is smooth as a map into ∂M, and use this to prove that ∂M has a unique smooth structure making it an embedded submanifold of M.
(12/19/18) Page 129, proof of Sard's theorem, second paragraph: Just before the last sentence of the paragraph, insert the following: "In the \mathbb{H}^{n} case, extend F to a smooth map on an open subset of \mathbb{R}^{m}, and replace U by that open subset; if we can show that the set of critical values of the extended map has measure zero, then the same is true of the set of critical values of F."
(3/16/19) Page 129, displayed equation near the bottom of the page: Change " i th partial derivatives" to " i thorder partial derivatives."
(12/26/18) Page 130, just below equation (6.2): Right after the displayed equation, insert "(where the component functions F^{2}, \ldots, F^{n} might be different from the ones in the original coordinate chart)."
$(3 / 28 / 20)$ Page 131, two lines below the first displayed equation: Change $A^{\prime}(R / K)^{k+1}$ to $A^{\prime}(R \sqrt{m} / K)^{k+1}$.
(1/8/18) Page 131, three lines below the first displayed equation: Insert "at most" before " K^{m} balls."
$(3 / 28 / 20)$ Page 131, second displayed equation: Change the left-hand side to $K^{m}\left(A^{\prime}\right)^{n}(R \sqrt{m} / K)^{n(k+1)}$, and in the next line, change the definition of $A^{\prime \prime}$ to $A^{\prime \prime}=\left(A^{\prime}\right)^{n}(R \sqrt{m})^{n(k+1)}$.
$(4 / 17 / 13)$ Page 132 , proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \varnothing$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \operatorname{Int} M) \backslash \Delta_{M}$ and to $(M \times \partial M) \backslash \Delta_{M}$ (both of which are smooth manifolds with boundary), and note that there is a point $[v] \in \mathbb{R} \mathbb{P}^{N-1}$ that is not in the image of τ or either of these restrictions of κ. [Thanks to David Iglesias Ponte for suggesting this correction.]
(10/25/21) Page 134, proof of Theorem 6.15, just after the fourth paragraph of the proof: Insert the following: "In case M is an arbitrary compact subset of a larger manifold \tilde{M} with or without boundary, we can adapt this argument to obtain an embedding of a neighborhood of M into $\mathbb{R}^{n m+m}$. After covering M with finitely many regular coordinate balls or half-balls for \tilde{M}, the argument above produces an injective immersion $F: \bigcup_{i} \bar{B}_{i} \rightarrow \mathbb{R}^{n m+m}$, which is an embedding because its domain is compact; the restriction of this map to the union of the sets B_{i} is the desired embedding." [This is needed in the ensuing argument for the noncompact case, because the sets E_{i} might not be regular domains when $\partial M \neq \varnothing$.]
(7/3/15) Page 134, displayed equations two-thirds of the way down the page: In the definition of E_{i}, there's an " $i-i$ " that should be " $i-1$." It should read $E_{i}=f^{-1}\left(\left[b_{i-1}, a_{i+1}\right]\right)$.
(10/24/21) Page 134, just below the displayed equations two-thirds of the way down the page: Delete the sentence "By Proposition 5.47, each E_{i} is a compact regular domain." Two lines below that, replace "smooth embedding of E_{i} " with "smooth embedding of a neighborhood of E_{i}."
(7/2/18) Page 137, first paragraph under the subheading "Tubular Neighborhoods," fifth line: Change R^{n} to \mathbb{R}^{n}.
(7/27/18) Page 138, proof of Theorem 6.23, end of the first paragraph: Change "standard coordinate frame" to "standard coordinate basis."
$(11 / 25 / 12)$ Page 145, statement of Corollary 6.33: After "immersed submanifold," insert "with $\operatorname{dim} S=\operatorname{dim} M$."
$(12 / 5 / 16)$ Page 145, paragraph above Prop. 6.34: In the definition of smooth family of maps, replace " $F: M \times S \rightarrow$ N " by " $F: N \times S \rightarrow M$."
(9/28/19) Page 146, equation (6.9): Should read $d F\left(T_{(p, s)} W\right) \subseteq T_{q} X$. [Change the equal sign to subset.]
$(9 / 28 / 19)$ Page 146 , line below the last displayed equation: Change " $=T_{q} X$ " to " $\subseteq T_{q} X$."
(11/25/12) Page 148, Problem 6-13: Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F^{\prime} is an embedding, but then it's essentially just a restatement of part (b).]
(2/10/18) Page 150, last line: Change "Theorem 20.16" to "Theorem 20.22."
(12/30/17) Page 160, first line: Change $R_{h h_{1}^{-1}}$ to $R_{h_{1}^{-1} h}$.
$(2 / 16 / 18)$ Page 164 , just above the subheading: Replace the last line of the proof of Prop. 7.23 by "The action is smooth because each φ can be written locally as a composition of a smooth local section followed by π."
(8/26/14) Page 169, first line: Change \widetilde{G} to G.
(6/21/20) Page 169, statement of Theorem 7.35: Replace the phrase "closed Lie subgroups such that N is normal" by "Lie subgroups such that N is normal and closed." [In fact, using the result of Theorem 19.25 later in the book, the hypothesis that N is closed can also be omitted.]
$(3 / 18 / 19)$ Page 171, third line from the end of the proof: Change E_{i} to E_{j}, so the formula reads $\rho_{j}^{i}(g)=\pi^{i}\left(g \cdot E_{j}\right)$.
(9/17/14) Page 173, Problem 7-21: Replace the first sentence by "Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if n is odd, and in cases (b) and (d) if and only if $n=1$."
(1/18/21) Page 178, Example 8.10(d): Change "Example 8.4" to "Example 8.5."
(9/15/23) Page 179, statement of Lemma 8.13: Change "local frame for $T \mathbb{R}^{n}$ " to "local frame for \mathbb{R}^{n}."
(6/9/19) Page 184, Example 8.20, next-to-last line: Change $p=(u, v)$ to $q=(u, v)$.
$(3 / 19 / 21)$ Page 184, proof of Proposition 8.22: After "Proposition 5.37," insert "in the case $\partial S=\varnothing$. When S has nonempty boundary, the proof of Proposition 5.37 still goes through using boundary slice coordinates for S."
$(11 / 17 / 12)$ Page 196, proof of Proposition 8.45, next-to-last line: Should read " $F_{*} \circ\left(F^{-1}\right)_{*}=\left(F \circ F^{-1}\right)_{*}=\operatorname{Id}_{\operatorname{Lie}(H)}$ and $\left(F^{-1}\right)_{*} \circ F_{*}=\operatorname{Id}_{\operatorname{Lie}(G)} . "$
(4/6/24) Page 197, first paragraph: Change "proposition" to "theorem."
(4/6/24) Page 197, paragraph following the proof of Theorem 8.46: Change "proposition" to "theorem" (twice).
(5/27/17) Page 208, first line: Change to "This is just the existence and smoothness statements of Theorem D. 1"
$(4 / 6 / 24)$ Page 213, line 6 of the proof: Change "to same ODE" to "to the same ODE."
$(3 / 10 / 16)$ Page 213, first sentence of the last paragraph: The definition of t_{0} should be $t_{0}=\sup \left\{t \in \mathbb{R}:\left(t, p_{0}\right) \in W\right\}$.
(5/24/19) Page 214, Fig. 9.6: The shaded area should be labeled W, not \mathscr{D}.
(12/2/15) Page 217, Fig. 9.7: Both occurrences of φ should be Φ.
$(12 / 2 / 15)$ Page 219, second displayed equation: Change " $V^{j}(0, p)=0$ " to " $\Phi^{j}(0, p)=0$."
(12/2/15) Page 219, two lines below (9.12): Here and in the rest of the paragraph, change p_{0} to p_{1} (seven times) to avoid confusion with the prior unrelated use of p_{0} in this proof.
(5/29/16) Page 222, just below the section heading: Insert the following sentence: "On a manifold with boundary, the definitions of flow domain, flow, and infinitesimal generator of a flow are exactly the same as on a manifold without boundary."
(2/15/19) Page 223, line 2: Change $\delta: M \rightarrow \mathbb{R}^{+}$to $\delta: \partial M \rightarrow \mathbb{R}^{+}$.
(8/19/14) Page 223, proof of Theorem 9.26: There's a gap in this proof, because it is not necessarily the case that $M(a)$ is a regular domain in $\operatorname{Int} M$. To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:
"Theorem 9.25 shows that ∂M has a collar neighborhood C_{0} in M, which is the image of a smooth embedding $E_{0}:[0,1) \times \partial M \rightarrow M$ satisfying $E_{0}(0, x)=x$ for all $x \in \partial M$. Let $f: M \rightarrow \mathbb{R}^{+}$be a smooth positive exhaustion function. Note that $W=\left\{(t, x): f\left(E_{0}(t, x)\right)>f(x)-1\right\}$ is an open subset of $[0,1) \times \partial M$ containing $\{0\} \times \partial M$. Using a partition of unity as in the proof of Theorem 9.20 , we may construct a smooth positive function $\delta: \partial M \rightarrow \mathbb{R}$ such that $(t, x) \in W$ whenever $0 \leq t<\delta(x)$. Define $E:[0,1) \times \partial M \rightarrow M$ by $E(t, x)=E_{0}(t \delta(x), x)$. Then E is a diffeomorphism onto a collar neighborhood C of ∂M, and by construction $f(E(t, x))>f(x)-1$ for all $(t, x) \in[0,1) \times \partial M$. We will show that for each $a \in(0,1)$, the set $E([0, a] \times \partial M)$ is closed in M. Suppose p is a boundary point of $E([0, a] \times \partial M)$ in M; then there is a sequence $\left\{\left(t_{i}, x_{i}\right)\right\}$ in $[0, a] \times \partial M$ such that $E\left(t_{i}, x_{i}\right) \rightarrow p \in M$. Then $f\left(E\left(t_{i}, x_{i}\right)\right)$ remains bounded, and thus $f\left(x_{i}\right)<f\left(E\left(t_{i}, x_{i}\right)\right)+1$ also remains bounded. Since ∂M is closed in $M,\left.f\right|_{\partial M}$ is also an exhaustion function, and therefore the sequence $\left\{x_{i}\right\}$ lies in some compact subset of ∂M. Passing to a subsequence, we may assume $\left(t_{i}, x_{i}\right) \rightarrow\left(t_{0}, x_{0}\right)$, and therefore $p=E\left(t_{0}, x_{0}\right) \in E([0, a] \times \partial M)$."

Then at the end of the first paragraph of the proof, add the following sentences:
"To see that $M(a)$ is a regular domain, note first that it is closed in M because it is the complement of the open set $C(a)$. Let $p \in M(a)$ be arbitrary. If $p \notin E([0, a] \times \partial M)$, then p has a neighborhood in Int M contained in $M(a)$ by the argument above. If $p \in E([0, a] \times \partial M)$, then $p=E(a, x)$ for some $x \in \partial M$, and C is a neighborhood of p in which $M(a) \cap C$ is the diffeomorphic image of $[a, 1) \times \partial M$."
(1/30/14) Page 223, proof of Theorem 9.26, last line of the first paragraph: Change $0 \leq t<a$ to $0 \leq s<a$.
$(1 / 30 / 14)$ Page 225, Example 9.31: At the end of the example, insert the sentence "If $n \geq 2$, then $M_{1} \# M_{2}$ is connected."
(7/25/16) Page 226, Example 9.32, fifth line: Replace the sentence beginning "It is a smooth manifold without boundary ..." by "It is a topological manifold without boundary, and can be given a smooth structure such that each of the natural maps $M \rightarrow D(M)$ (induced by inclusion into the left and right summands of the disjoint union) is a smooth embedding."
$(3 / 2 / 21)$ Page 230, line 1 and first displayed equation: Change $\theta_{t}(x)$ to $\theta_{t}(u)$ (twice).
(4/23/13) Page 230, second paragraph:"from Case" should be "from Case 1."
$(2 / 26 / 18)$ Page 230, fourth paragraph, last line: Change $[X, Y]$ to $[V, W]$.
(9/8/18) Page 234, proof of Theorem 9.46, second paragraph: Replace the two parenthesized sentences by the following: "(To see this, just choose $\varepsilon_{1}>0$ and $U_{1} \subseteq U$ such that θ_{1} maps $\left(-\varepsilon_{1}, \varepsilon_{1}\right) \times U_{1}$ into U, and then inductively choose ε_{i} and U_{i} such that $\theta_{i} \operatorname{maps}\left(-\varepsilon_{i}, \varepsilon_{i}\right) \times U_{i}$ into U_{i-1}. Taking $\varepsilon=\min \left\{\varepsilon_{i}\right\}$ and $Y=U_{k}$ does the trick.)"
(5/29/16) Page 241, Example 9.52: At the end of the example, add the sentence "Note that u is smooth on the open set $\mathbb{R}^{2} \backslash\{0\}$, which is a neighborhood of S."
(6/4/14) Page 246, Problem 9-11: Delete the second sentence of the hint. [Because N is inward-pointing along ∂M, no integral curve that starts on ∂M can hit the boundary again, because the vector field would have to be tangent to ∂M or outward-pointing at the first such point.]
(11/17/21) Page 248, first displayed equation: Should read

$$
V(t, p)=\left.\frac{\partial}{\partial s}\right|_{s=t} H_{s}\left(H_{t}^{-1}(p)\right)
$$

(11/12/16) Page 248, Problem 9-22(c): Replace the problem statement by
(c) $\frac{\partial u}{\partial x}+u \frac{\partial u}{\partial y}=-y, \quad u(0, y)=0$.
[Without this sign change, the third claim in Problem 9-23 is not true.]
(11/16/20) Page 254, paragraph beginning "With respect to," third line: Replace $V_{p} \times \mathbb{R}^{k}$ with $U_{\alpha} \times \mathbb{R}^{k}$.
$(11 / 4 / 21)$ Page 255, Example 10.8, line 5: Replace the phrase "a bijective map $\left.\Phi\right|_{U}:\left(\left.\pi\right|_{S}\right)^{-1}(U \cap S) \rightarrow(U \cap S) \times$ \mathbb{R}^{k} " with "a bijective map from $\left(\left.\pi\right|_{S}\right)^{-1}(U \cap S)$ to $(U \cap S) \times \mathbb{R}^{k}$." [The notation $\left.\Phi\right|_{U}$ is inappropriate here.]
(6/17/19) Page 255, Example 10.8, lines 6-8: Replace the sentence beginning with "If E is a smooth vector bundle" by the following: "If E is a smooth vector bundle and $S \subseteq M$ is an embedded submanifold, it follows easily from the chart lemma that $\left.E\right|_{S}$ is a smooth vector bundle. If S is merely immersed, we give $\left.E\right|_{S}$ a topology and smooth structure making it into a smooth rank- k vector bundle over S as follows: For each $p \in S$, choose a neighborhood U of p in M over which there is a local trivialization Φ of E, and a neighborhood V of p in S that is embedded in M and contained in U. Then the restriction of Φ to $\pi^{-1}(V)$ is a bijection from $\pi^{-1}(V)$ to $V \times \mathbb{R}^{k}$, and we can apply the chart lemma to these bijections to yield the desired structure."
(3/30/21) Page 255, Example 10.8, last line: Change "over M " to "over S."
(11/27/20) Page 260, two lines above Proposition 10.22: Change $\tau^{n}(p)$ to $\tau^{k}(p)$.
$(10 / 22 / 18)$ Page 261, statement of Proposition 10.25 , first line: Change $\pi^{\prime}: E \rightarrow M^{\prime}$ to $\pi^{\prime}: E^{\prime} \rightarrow M^{\prime}$.
(4/2/21) Page 263, first full paragraph: In the first two lines of the paragraph, change σ_{1}, σ_{2} to τ_{1}, τ_{2} (twice).
(7/2/14) Page 264, paragraph above the subheading, first sentence: "homomorphism" should be "homomorphisms."
(6/21/23) Page 265, proof of Lemma 10.32, fifth line: Change "basis for D_{p} at each point $p \in U$ " to "basis for D_{q} at each point $q \in U$."
(4/6/24) Page 267, paragraph before Lemma 10.35: Change "proposition" to "lemma."
(8/7/23) Page 267, proof of Lemma 10.35 , lines $3 \& 4$: Change "single slice in some coordinate ball or half-ball" to "single slice or half-slice in some coordinate ball."
(4/2/21) Page 271, Problem 10-18: Change "a properly embedded" to "an embedded."
(2/6/21) Page 271, Problem 10-19(d): Add the following: [Hint: For the "only if" direction, to show that F is compact, use a finite number of local trivializations to construct a closed set over which E is trivial.]
(2/6/22) Page 276, proof of Proposition 11.9, first line: Change "Theorem 10.4" to "Proposition 10.4."
(6/29/15) Page 278, Example 11.13, third line: Change "every coordinate frame" to "every coordinate coframe."
(6/11/19) Page 296, line 6 from the bottom: Change "closed forms" to "closed covector fields" (twice).
(4/18/20) Page 301, Problem 11-10(c): Change S^{2} to \mathbb{S}^{2}.
(4/20/20) Page 301, Problem 11-13: Add the assumption that $n>0$.
(5/19/18) Page 303, just below the commutative diagram: Insert this sentence: "A natural transformation is called a natural isomorphism if each map λ_{X} is an isomorphism in D."
(5/19/18) Page 303, Problem 11-18(b) and (c): Change "natural transformation" to "natural isomorphism" in both parts.
(4/7/21) Page 317, paragraph beginning "Any one": At the end of the paragraph, add this sentence: "If A and B are tensor fields, then $A \otimes B$ denotes the tensor field defined by $(A \otimes B)_{p}=A_{p} \otimes B_{p} . "$
(5/24/18) Page 317, displayed equation just below the middle of the page: Change $A_{j_{1} \ldots i_{l}}^{i_{1} \ldots i_{k}}$ to $A_{j_{1} \ldots j_{l}}^{i_{1} \ldots i_{k}}$ on the third line of the display, and again on the line below the display. [The last lower index should be j_{l}, not i_{l}.]
(4/18/17) Page 320, statement of Proposition 12.25: Change the domain and codomain of G : It should read $G: P \rightarrow M$.
(4/18/17) Page 320, Proposition 12.25(e): Should $\operatorname{read}(F \circ G)^{*} B=G^{*}\left(F^{*} B\right)$.
$(4 / 17 / 15)$ Page 333, first line: Change $U \subseteq M$ to $V \subseteq M$.
(7/1/14) Page 345, Problem 13-10: In the last line of the problem statement, change $L_{\bar{g}}(\tilde{\gamma})>L_{\bar{g}}(\gamma)$ to $L_{\bar{g}}(\tilde{\gamma}) \geq L_{\bar{g}}(\gamma)$, and delete the phrase "unless $\tilde{\gamma}$ is a reparametrization of γ." [Because the definition of reparametrization that I'm using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]
$(12 / 18 / 12)$ Page 355, proof of Lemma 14.10: At the beginning of the proof, insert "Let $\left(E_{1}, \ldots, E_{n}\right)$ be the basis for V dual to $\left(\varepsilon^{i}\right)$."
(12/18/12) Page 356, Case 4, second line: Should read "brings us back to Case 3."
(1/23/24) Page 357, first line after the proof of Proposition 14.11: Change "this lemma" to "this proposition."
(7/3/15) Page 368, second paragraph: At the end of the first sentence of the paragraph, insert "(see pp. 341343)."
(7/18/17) Page 368, paragraph below equation (14.25): Change $T M$ to $T \mathbb{R}^{3}$ (twice).
(9/17/14) Page 371, three lines above (14.31): Change that sentence to "The only terms in this sum that can possibly be nonzero are those for which J has no repeated indices and m is equal to one of the indices in J, say $m=j_{p}$."
(5/14/20) Page 374, Problem 14-2: Add "[Hint: One way to approach this is to prove first that a k-covector ω is decomposable if and only if the map from \mathbb{R}^{n} to $\Lambda^{k-1}\left(\mathbb{R}^{n *}\right)$ given by $\left.v \mapsto v\right\lrcorner \omega$ has $(n-k)$-dimensional kernel.]"
(12/2/20) Page 377, line 4: Change "is a simply" to "is simply."
(10/17/21) Page 382, proof of Proposition 15.6, second paragraph: In the first sentence of the paragraph, after "smooth chart," insert "with connected domain."
(3/9/16) Page 386, just above Proposition 15.24: After "determines an orientation on ∂M," insert "if M is oriented."
(4/24/22) Page 388, last paragraph: Change "Proposition 13.6 " to "Corollary 13.8."
(7/20/17) Page 389, Exercise 15.30: Change "a local isometry" to "an orientation-preserving local isometry."
$(1 / 25 / 24)$ Page 393, Example 15.38, next-to-last line in the first paragraph: Change Aut ${ }_{\pi}(E)$ to Aut $_{q}(E)$.
(5/9/20) Page 397, Problem 15-1: At the end of the last sentence, add "when $n>1$."
(5/14/20) Page 397, Problem 15-3: Change $\overline{\mathbb{B}}^{n}$ to $\overline{\mathbb{B}}^{n+1}$ (twice).
(5/28/22) Page 397, Problem 15-4: Change the first sentence to "Let θ be the flow of a smooth vector field on an oriented smooth manifold." [The stated result is true also for manifolds with boundary and for nonmaximal flows, but to prove it, one must first do a little work to generalize some of the results of Theorem 9.12 to more general flows.]
(4/26/14) Page 402, lines 2-3: There should not be a paragraph break before "and."
(3/14/16) Page 403, just after the last displayed equation: Add "(In the \mathbb{H}^{n} case, apply Theorem C. 26 to the interiors of D and E considered as subsets of \mathbb{R}^{n}.)"
(5/28/18) Page 409, line 2: Change φ_{i} to φ.
(6/24/18) Page 415, paragraph above Example 16.19: Change "interior charts and charts with corners" to "interior charts, boundary charts, and charts with corners."
$(6 / 2 / 16)$ Page 416 , line 3 from the bottom: Change " $\gamma(0)=p$ " to " $\gamma(0)=\psi(p)$."
$(9 / 25 / 19)$ Page 418, statement of Proposition 16.21: Delete "compact," and change " n-manifold" to " $(n+1)$ manifold."
(6/24/18) Page 419, proof of Theorem 16.25, first paragraph: Replace the second and third sentences of the paragraph by the following: "By means of smooth charts and a partition of unity, we may reduce the theorem to the cases in which $M=\mathbb{R}^{n}, M=\mathbb{H}^{n}$, or $M=\overline{\mathbb{R}}_{+}^{n}$. The \mathbb{R}^{n} and \mathbb{H}^{n} cases are treated just as before."
(9/3/23) Page 423, just above equation (16.11): Change " $\beta: \mathfrak{X}(M) \rightarrow \Omega^{n-1}(M)$ " to " $\beta: T M \rightarrow \Lambda^{n-1} T^{*} M$ "
$(7 / 22 / 15)$ Page 424 , second displayed equation: Change $\iota_{S}^{*} \beta(X)$ to $\iota_{\partial M}^{*} \beta(X)$.
(2/18/13) Page 426, three lines below the section heading: "cam" should be "can."
$(2 / 11 / 15)$ Page 430, Proposition $16.38(\mathrm{c})$: This statement is wrong. Change it to "If F is smooth, then $F^{*} \mu$ is a continuous density on M; and if F is a local diffeomorphism, $F^{*} \mu$ is smooth."
(5/31/22) Page 435, Problem 16-4: Change "manifold with boundary" to "manifold with nonempty boundary."
(7/27/16) Page 439, Problem 16-23: The formula for g should be

$$
g=\frac{d x^{2}+d y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

(2/19/13) Page 444, two lines below equation (17.4): Change $T_{(q, s)} M$ to $T_{(q, s)}(M \times \mathbb{R})$.
(4/7/24) Page 446, last line: Change c_{q} to C_{q}.
$(4 / 7 / 24)$ Page 447, line 2: After "inclusion map," insert "and $c_{q}: M \rightarrow\{q\}$ denotes the constant map."
(6/6/18) Page 447, Corollary 17.15: Change "every closed form is exact" to "every closed p-form is exact for $p \geq 1$."
$(5 / 15 / 15)$ Page 450 , proof of Theorem 17.21 , line 5: Change $H_{\mathrm{dR}}^{1}\left(\mathbb{S}^{n}\right)$ to $H_{\mathrm{dR}}^{1}\left(\mathbb{S}^{1}\right)$.
(8/14/17) Page 451, proof of Corollary 17.25 , next-to-last line: Change $\operatorname{Id}_{H_{\mathrm{dR}}^{n-1}}(S)$ to $\operatorname{Id}_{H_{\mathrm{dR}}^{n-1}(S)}$.
(11/24/17) Pages 455-456, Proof of Theorem 17.32: The proof given in the book is incorrect, because the V_{i} 's might not be connected, so Theorem 17.30 does not apply to them. Here's a corrected proof.
Lemma. If M is a noncompact connected manifold, there is a countable, locally finite open cover $\left\{V_{j}\right\}_{j=1}^{\infty}$ of M such that each V_{i} is connected and precompact, and for each j, there exists $k>j$ such that $V_{j} \cap V_{k} \neq \varnothing$.
Proof. Let $\left\{W_{j}\right\}_{j=1}^{\infty}$ be a countably infinite, locally finite cover of M by precompact, connected open sets (such a cover exists by Prop. 1.19 and Thm. 1.15). By successively deleting unneeded sets and renumbering, we can ensure that no W_{j} is contained in the union of the other W_{i} 's.

Let $Y_{1}=\bigcup_{i=2}^{\infty} W_{i}$. Because M is connected, each component of Y_{1} meets W_{1}, and by local finiteness of $\left\{W_{j}\right\}$, there are only finitely many such components. Such a component is precompact in M if and only if it is a union of finitely many W_{i} 's. Let V_{1} be the union of W_{1} together with all of the precompact components of Y_{1}, and let X_{1} be the union of all W_{i} 's not contained in V_{1}. Then V_{1} is connected and precompact, and X_{1} has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets V_{1}, \ldots, V_{m} whose union contains $W_{1} \cup \cdots \cup W_{m}$, and such that the union X_{m} of all the W_{i} 's not contained in $V_{1} \cup \cdots \cup V_{m}$ has no precompact components. Let j_{m} be the smallest index such that $W_{j_{m}}$ is not contained in $V_{1} \cup \cdots \cup V_{m}$, and let Y_{m+1} be the union of all W_{i} 's other than $W_{j_{m}}$ not contained in $V_{1} \cup \cdots \cup V_{m}$. Any precompact component of Y_{m+1} must meet $W_{j_{m}}$, because otherwise, it would be a precompact component of X_{m}. Let V_{m+1} be the union of $W_{j_{m}}$ with all of the precompact components of Y_{m+1}. As before, V_{m+1} is precompact and connected, and the union X_{m+1} of the W_{i} 's not contained in $V_{1} \cup \cdots \cup V_{m+1}$ has no precompact components. Then by construction, for each j, the set $X_{j}=\bigcup_{i>j} V_{i}$ has no precompact components. If some V_{j} does not meet V_{k} for any $k>j$, then V_{j} itself is a precompact component of X_{j-1}, which is a contradiction. Thus for each j, there is some $k>j$ such that $V_{j} \cap V_{k} \neq \varnothing$.
Proof of Theorem 17.32. Choose an orientation on M. Let $\left\{V_{j}\right\}_{j=1}^{\infty}$ be an open cover of M satisfying the conclusions of the preceding lemma. For each j, let $K(j)$ denote the least integer $k>j$ such
that $V_{j} \cap V_{k} \neq \varnothing$, and let θ_{j} be an n-form compactly supported in $V_{j} \cap V_{K(j)}$ whose integral is 1 . Let $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ be a smooth partition of unity subordinate to $\left\{V_{j}\right\}_{j=1}^{\infty}$.

Now suppose ω is any n-form on M, and let $\omega_{j}=\psi_{j} \omega$ for each j. Let $c_{1}=\int_{V_{1}} \omega_{1}$, so that $\omega_{1}-c_{1} \theta_{1}$ is compactly supported in V_{1} and has zero integral. It follows from Theorem 17.30 that there exists $\eta_{1} \in \Omega_{c}^{n-1}\left(V_{1}\right)$ such that $d \eta_{1}=\omega_{1}-c_{1} \theta_{1}$. Suppose by induction that we have found $\eta_{1}, \ldots, \eta_{m}$ and constants c_{1}, \ldots, c_{m} such that for each $j=1, \ldots, m, \eta_{j} \in \Omega_{c}^{n-1}\left(V_{j}\right)$ and

$$
\begin{equation*}
d \eta_{j}=\left(\omega_{j}+\sum_{i: K(i)=j} c_{i} \theta_{i}\right)-c_{j} \theta_{j} \tag{*}
\end{equation*}
$$

Let

$$
c_{j+1}=\int_{V_{j+1}}\left(\omega_{j+1}+\sum_{i: K(i)=j+1} c_{i} \theta_{i}\right)
$$

Then by Theorem 17.30, there exists $\eta_{j+1} \in \Omega_{c}^{n-1}\left(V_{j+1}\right)$ satisfying the analog of $(*)$ with j replaced by $j+1$. Set $\eta=\sum_{j=1}^{\infty} \eta_{j}$, with each η_{j} extended to be zero on $M \backslash V_{j}$. By local finiteness, this is a smooth ($n-1$)-form on M. It satisfies

$$
d \eta=\omega+\sum_{j=1}^{\infty}\left(\sum_{i: K(i)=j} c_{i} \theta_{i}\right)-\sum_{j=1}^{\infty} c_{j} \theta_{j}
$$

Each term $c_{i} \theta_{i}$ appears exactly once in the first sum above, so the two sums cancel each other.
(7/27/16) Page 457, line below the second displayed equation: Change "Theorem 17.31 " to "Theorem 17.30."
(7/12/16) Page 463, line above equation (17.15): Insert missing space before "Similarly."
(7/13/16) Page 464, end of proof of Corollary 17.42: Insert "Note that this construction produces a form σ whose support is contained in $U \cap V$." [This might be useful for solving Problem 18-6.]
(7/12/16) Page 471, last paragraph: Replace the sentence starting "The hardest part ..." with "The hardest part is showing that the singular chain complex of M can be replaced by a chain complex built out of simplices whose images lie in either U or V, without changing the homology."
(9/12/17) Page 487, Problem 18-1, first line: Change "an oriented smooth manifold" to "a smooth manifold."
(8/8/18) Page 489, Problem 18-7(b): Add to the hint: "In order to use Lemma 17.27, you'll need to prove the following fact: Every bounded convex open subset of \mathbb{R}^{n} is diffeomorphic to \mathbb{R}^{n}. To prove this, let U be such a subset, and without loss of generality assume $0 \in U$. First show that there exists a smooth nonnegative function $f \in C^{\infty}(U)$ such that $f(0)=0$ and $f(x) \geq 1 / d(x)$ away from a small neighborhood of 0 , where $d(x)$ is the distance from x to ∂U. Next, show that $g(x)=1+\int_{0}^{1} t^{-1} f(t x) d t$ is a smooth positive exhaustion function on U that is nondecreasing along each ray starting at 0 . Finally, show that the map $F: U \rightarrow \mathbb{R}^{n}$ given by $F(x)=g(x) x$ is a bijective local diffeomorphism. Also, you may use the fact that the conclusion of the five lemma is still true even if the appropriate diagram commutes only up to sign."
(1/15/13) Page 491, Example 19.1(c): Delete the word "unit."
(5/22/15) Page 492, line above Proposition 19.2: Change "lie" to "Lie."
(12/17/15) Page 492, proof of Proposition 19.2, fourth line: Change "Given $p \in M$ " to "Given $p \in U$ "
(9/12/16) Page 506, Lemma 19.24, last line: Before "left-invariant," insert "smooth."
(6/1/20) Page 512, Problem 19-4: In the first line of the problem, change "all three coordinates are positive" to " z is positive." Then replace the last sentence by "Find an explicit global chart on U in which D is spanned by the first two coordinate vector fields." [Technically it might not be a flat chart because its image need not be a cube in \mathbb{R}^{3}.]
(7/27/22) Page 513, Problem 19-10: Add the following to the end of the problem statement: "(Transversality to an immersed submanifold is defined exactly as in the embedded case.)"
(10/4/17) Page 518, sentence before Prop. 20.3: Change "one-parameter subgroups of GL($n, \mathbb{R})$ " to "one-parameter subgroups of subgroups of $\operatorname{GL}(n, \mathbb{R})$."
(5/23/16) Page 521, first displayed equation: Change $d \Phi_{0}$ to $d \Phi_{e}$ (twice).
(7/10/23) Page 524, first paragraph, last line: Change " $U_{i} \subseteq U_{0}$ and $\tilde{U}_{i} \subseteq \widetilde{U}_{0}$ " to " $U_{i} \subseteq U_{0}, V_{i} \subseteq \Phi\left(\widetilde{U}_{0}\right)$, and $\tilde{U}_{i} \cap \mathfrak{h} \subseteq U_{0} . "$
(6/9/19) Page 528, line 9: Change two instances of (g, p) in subscripts to (g, q).
(5/19/18) Page 528, just below the displayed equation in the middle of the page: The smoothness of the map σ_{q} is not quite immediate from the definition. Replace the three sentences beginning "It follows" with this: "Because S_{p} is a weakly embedded submanifold by Theorem 19.17, to show that σ_{q} is a smooth local section of S_{p}, it suffices to show that it is smooth into $G \times M$ and takes its values in S_{p}. The first component function is smooth as a map into G by smoothness of group multiplication. To show that the second component is smooth into M as a function of \hat{X} (and therefore of $\exp X$), you need to use the argument sketched out just below equation (20.10): as in the proof of Prop. 20.8, apply the fundamental theorem on flows to the vector field $\Xi_{(p, X)}=\left(\widehat{X}_{g}, 0\right)$ on $M \times \mathfrak{g}$. A straightforward computation shows that $\gamma(t)=\left(g \exp t X, \eta_{(\hat{X})}(t, q)\right)$ is an integral curve of \tilde{X} starting at (g, q), from which it follows easily that $\sigma_{q}(g \exp X)=\gamma(1) \in S_{p}$."
(1/10/17) Page 537, Problem 20-6(a): Change $B \in \mathfrak{g l}(n, \mathbb{R})$ to $B \in \mathfrak{s l}(n, \mathbb{R})$.
(5/31/16) Page 538, Problem 20-11(b): Here's a better hint, which doesn't require proving part (a) first: "[Hint: Consider the graph of F as a subgroup of $G \times H$.]"
(10/18/17) Page 542, middle of the paragraph before Example 21.3: Change "the action of \mathbb{R}^{k} on \mathbb{R}^{n} " to "the action of \mathbb{R}^{k} on $\mathbb{R}^{k} \times \mathbb{R}^{n}$."
(12/28/23) Page 543, 6th line from the bottom: Change "subsequence of G_{K} " to "sequence in G_{K}."
(2/25/18) Page 548, last two lines: Allen Hatcher's name is misspelled. (Sorry, Allen.)
(5/23/16) Page 549, proof of Proposition 21.12, last sentence: Change the first phrase of that sentence to "Second, if $p, p^{\prime} \in E$ are in different orbits and $\pi(p) \neq \pi\left(p^{\prime}\right), \ldots$. ." Then add the following sentences at the end of the proof: "If p and p^{\prime} are in different orbits and $\pi(p)=\pi\left(p^{\prime}\right)$, let W be an evenly covered neighborhood of $\pi(p)$, and let V, V^{\prime} be the components of $\pi^{-1}(W)$ containing p and p^{\prime}, respectively. For any $g \in \operatorname{Aut}_{\pi}(E)$, a simple connectedness argument shows that $g \cdot V$ is a component of $\pi^{-1}(W)$; if it had nontrivial intersection with V it would have to be equal to V, which would imply $g \cdot p=p^{\prime}$, a contradiction."
(7/26/16) Page 567, two lines above Proposition 22.8: Insert "a" before "2-covector."
$(10 / 9 / 15)$ Page 568, Example 22.9(a), first line: The coordinates should be $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$. (The last coordinate is y^{n}, not x^{n}.)
(11/17/21) Page 571, line below equation (22.5): Delete the spurious word "theorem" at the end of the line.
(3/27/19) Page 572, middle of the page: Replace the sentence starting "On the other hand" by this: "On the other hand, the left-hand side is just the ordinary t-derivative of a time-dependent tensor on a fixed vector space, and expanding in terms of a basis shows that it satisfies a similar product rule:"
$(10 / 5 / 17)$ Page 573, statement of Proposition 22.15, second line: Change " $V: J \times M$ " to " $V: J \times M \rightarrow T M$ "; and change ψ to θ.
(11/18/17) Page 583, line 4: Change $\mathbb{R}^{2 n+1} \backslash\{0\}$ to $\mathbb{R}^{2 n+2} \backslash\{0\}$.
(7/26/16) Page 583, third displayed equation: Should read

$$
T\lrcorner d \Theta=-2 \sum_{i=1}^{n+1}\left(x^{i} d x^{i}+y^{i} d y^{i}\right)=-d\left(|x|^{2}+|y|^{2}\right)
$$

(7/26/16) Page 583, two lines below the third displayed equation: The formula for $d \Theta(N, T)$ should be $d \Theta(N, T)=$ $2\left(|x|^{2}+|y|^{2}\right)$.
(11/28/12) Page 584, Exercise 22.29: Part (b) should read

$$
\text { (b) } T=\frac{\partial}{\partial z}
$$

(8/14/14) Page 584, paragraph above Theorem 22.33: Change all occurrences of θ in this paragraph to ψ, to avoid confusion with the use of θ for a contact form elsewhere in this section.
(11/24/17) Page 585, statement of Theorem 22.34, last line: Change H to F.
$(11 / 17 / 12)$ Page 587, equation (22.27): Change both occurrences of $\sigma(s)$ to $\sigma(x)$.
(6/7/22) Page 591, Problem 22-5: Add the hypothesis $n>0$.
(11/18/17) Page 592, Problem 22-15: Add the hypothesis that M is connected.
(9/22/15) Page 608, Proposition A.41(a): Insert the following phrase at the beginning of this statement: With the exception of the word "closed" in part (d).
$(7 / 22 / 13)$ Page 616 , Proposition A.77(b), last line: Change $\tilde{f}(0)$ to $\tilde{f_{e}}(0)$.
(12/19/18) Page 619, proof of Lemma B.2, fourth line: Replace "By Exercise B.1(b)" with "If w_{1} is equal to one of the v_{i} 's, then the ordered $(n+1)$-tuple $\left(w_{1}, v_{1}, \ldots, v_{n}\right)$ is linearly dependent; if not, then by Exercise B.1(b),"
(9/1/16) Page 632, Exercise B.29: Change "by a matrix" to "by a certain matrix" (twice).
(12/19/18) Page 637, Exercise B.42: Delete the words "is a homeomorphism that." [Checking that it's a homeomorphism requires the norm topology, which is not defined until later on that page.]
(9/6/16) Page 637, Exercise B.44: Change "basis map" to "basis isomorphism."
(12/19/18) Page 653, proof of Proposition C.21, second paragraph, second line: Change f to f_{D}.
$(2 / 25 / 18)$ Page 658 , two lines above (C.15): Change $B_{\delta}(0)$ to $\bar{B}_{\delta}(0)$.
(2/25/18) Page 660, display (C.20): Change $F^{-1}(x)$ to $F^{-1}(y)$.
(1/18/21) Page 664, statement of Theorem D.1(b): After the phrase "Any two differentiable solutions to (D.3)(D.4)," insert "defined on intervals containing t_{0}."
(12/2/15) Page 666, just below the fifth display: After the sentence ending "by our choice of δ and ε," insert "(If $t<t_{0}$, interchange t and t_{0} in the second line above.)"
(1/18/21) Page 667, statement of Theorem D.4: After the phrase "any two differentiable solutions to (D.3)-(D.4)," insert "defined on intervals containing t_{0}."
(2/13/24) Page 667, last paragraph: Change U to U_{0} (twice).
$(2 / 13 / 24)$ Page 668 , line 2: Change W to \bar{W}.
$(2 / 13 / 24)$ Page 668 , paragraph below equation (D.10): In the fourth line of the paragraph, change \bar{W} to W; and in the fifth line, change W to \bar{W}.
(1/18/21) Page 670, displayed inequality between (D.17) and (D.18): Change n to n^{2}.
$(1 / 18 / 21)$ Page 670 , last line: Change n to n^{2} in the definition of B.
(1/18/21) Page 671, inequality (D.19): Change n to n^{2} (twice).
(12/15/20) Page 671, just below (D.19): Replace the sentence "Since the expression on the right can be made as small as desired by choosing h and \tilde{h} sufficiently small, this shows ..." by the following: "Thus the expression on the left can be made as small as desired by choosing h and \widetilde{h} sufficiently small. This shows ..."
(6/11/19) Page 692: Under the entry for "Form," delete the references to page 294 for "closed" and page 292 for "exact."
(2/25/18) Page 693: The index entry for "Hatcher, Allen" is misspelled.

