
The Real Numbers and the Integers

PRIMITIVE TERMS

To avoid circularity, we cannot give every term a rigorous mathematical definition; we have to
accept some things as undefined terms. For this course, we will take the following fundamental
notions as primitive undefined terms. You already know what these terms mean; but the only facts
about them that can be used in proofs are the ones expressed in the axioms listed below (and any
theorems that can be proved from the axioms).

• Real number: Intuitively, a real number represents a point on the number line, or a (signed)
distance left or right from the origin, or any quantity that has a finite or infinite decimal
representation. Real numbers include integers, positive and negative fractions, and irrational
numbers like

√
2, π, and e.

• Integer: An integer is a whole number (positive, negative, or zero).

• Zero: The number zero is denoted by 0.

• One: The number one is denoted by 1.

• Addition: The result of adding two real numbers a and b is denoted by a+ b, and is called
the sum of a and b.

• Multiplication: The result of multiplying two real numbers a and b is denoted by ab or a ·b
or a × b, and is called the product of a and b.

• Less than: To say that a is less than b, denoted by a < b, means intuitively that a is to the
left of b on the number line.

DEFINITIONS

In all the definitions below, a and b represent arbitrary real numbers.

• The numbers 2 through 10 are defined by 2 = 1+1, 3 = 2+1, etc. The decimal representations
for other numbers are defined by the usual rules of decimal notation: For example, 23 is defined
to be 2 · 10 + 3, etc.

• The additive inverse or negative of a is the number −a that satisfies a + (−a) = 0, and
whose existence and uniqueness are guaranteed by Axiom 9.

• The difference between a and b, denoted by a− b, is the real number defined by a− b =
a+ (−b), and is said to be obtained by subtracting b from a.

• If a 6= 0, the multiplicative inverse or reciprocal of a is the number a−1 that satisfies
a · a−1 = 1, and whose existence and uniqueness are guaranteed by Axiom 10.

• If b 6= 0, the quotient of a and b, denoted by a/b, is the real number defined by a/b = ab−1,
and is said to be obtained by dividing a by b.

• A real number is said to be rational if it is equal to p/q for some integers p and q with q 6= 0.

• A real number is said to be irrational if it is not rational.

• The statement a is less than or equal to b, denoted by a ≤ b, means a < b or a = b.
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• The statement a is greater than b, denoted by a > b, means b < a.

• The statement a is greater than or equal to b, denoted by a ≥ b, means a > b or a = b.

• A real number a is said to be positive if a > 0. The set of all positive real numbers is denoted
by R

+, and the set of all positive integers by Z
+.

• A real number a is said to be negative if a < 0.

• A real number a is said to be nonnegative if a ≥ 0.

• A real number a is said to be nonpositive if a ≤ 0.

• If a and b are two distinct real numbers, a real number c is said to be between a and b if
either a < c < b or a > c > b.

• For any real number a, the absolute value of a, denoted by |a|, is defined by

|a| =
{

a if a ≥ 0,

−a if a < 0.

• If a is a real number and n is a positive integer, the nth power of a, denoted by an, is the
product of n factors of a. The square of a is the number a2 = a · a.

• If a is a nonnegative real number, the square root of a, denoted by
√
a, is the unique

nonnegative real number whose square is a (see Theorem 9 below).

• If n and k are integers, we say that n is divisible by k if there is an integer m such that
n = km.

• An integer n is said to be even if it is divisible by 2, and odd if not.

• If S is a set of real numbers, a real number b is said to be a maximum of S or a largest

element of S if b is an element of S and, in addition, b ≥ x whenever x is any element of S.
The terms minimum and smallest element are defined similarly.

• If S is a set of real numbers, a real number b (not necessarily in S) is said to be an upper

bound for S if b ≥ x for every x in S. It is said to be a least upper bound for S if every
other upper bound b′ for S satisfies b′ ≥ b. The terms lower bound and greatest lower

bound are defined similarly.

PROPERTIES OF EQUALITY

In modern mathematics, the relation “equals” can be used between any two “mathematical objects”
of the same type, such as numbers, matrices, ordered pairs, sets, functions, etc. To say that a = b
is simply to say that the symbols a and b represent the very same object. Thus the concept of
“equality” really belongs to mathematical logic rather than to any particular branch of mathematics.

Equality always has the following fundamental properties, no matter what kinds of objects it
is applied to. In the following statements, a, b, and c can represent any mathematical objects
whatsoever. (In our applications, they will usually be real numbers.)
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General Properties of Equality

1. (Reflexivity) a = a.
2. (Symmetry) If a = b, then b = a.
3. (Transitivity) If a = b and b = c, then a = c.
4. (Substitution) If a = b, then b may be substituted for a in any mathematical statement

without affecting that statement’s truth value.

In addition, for real numbers, we have the following properties. The first five statements say
roughly that if you start with a true equation between two real numbers, you can “do the same
thing to both sides” and still have a true equation. The last two say that if you start with two
true equations, you will still have a true equation after adding them together, multiplying them
together, subtracting one from the other, or dividing one by the other (provided you are not
dividing by zero). All of these statements can be proved using only reflexivity of equality and
substitution. In these statements, a, b, c, d represent arbitrary real numbers.

Properties of Equality of Real Numbers

1. If a = b, then a+ c = b+ c, ac = bc, and a− c = b− c.
2. If a = b and c is nonzero, then a/c = b/c.
3. If a = b, then −a = −b.
4. If a = b, and a and b are both nonzero, then a−1 = b−1.
5. If a = b, then a2 = b2.
6. If a = b and c = d, then a+ c = b+ d, ac = bd, and a− c = b− d.
7. If a = b and c = d, and c and d are both nonzero, then a/c = b/d.

AXIOMS FOR THE REAL NUMBERS AND INTEGERS

We assume that the following statements are true.

1. (Existence) There exists a set R consisting of all real numbers. It contains a subset Z ⊆ R

consisting of all integers.
2. (Closure of Z) If a and b are integers, then so are a+ b and ab.
3. (Closure of R) If a and b are real numbers, then so are a+ b and ab.
4. (Commutativity) a+ b = b+ a and ab = ba for all real numbers a and b.
5. (Associativity) (a+ b) + c = a+ (b+ c) and (ab)c = a(bc) for all real numbers a, b, and c.
6. (Distributivity) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all real numbers a, b, and c.
7. (Zero) 0 is an integer that satisfies a+ 0 = a = 0 + a for every real number a.
8. (One) 1 is an integer that is not equal to zero and satisfies a · 1 = a = 1 · a for every real

number a.
9. (Additive inverses) If a is any real number, there is a unique real number −a such that

a+ (−a) = 0. If a is an integer, then so is −a.
10. (Multiplicative inverses) If a is any nonzero real number, there is a unique real number

a−1 such that a · a−1 = 1.
11. (Trichotomy law) If a and b are real numbers, then one and only one of the following

three statements is true: a < b, a = b, or a > b.
12. (Closure of R

+) If a and b are positive real numbers, then so are a+ b and ab.
13. (Addition law for inequalities) If a, b, and c are real numbers and a < b, then a+ c <

b+ c.
14. (The well ordering axiom) Every nonempty set of positive integers contains a smallest

integer.
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15. (The least upper bound axiom) Every nonempty set of real numbers that has an upper
bound has a least upper bound.

SELECTED THEOREMS

These theorems can be proved from the axioms in the order listed below.

1. Properties of zero

(a) a− a = 0.
(b) 0− a = −a.
(c) 0 · a = 0.
(d) If ab = 0, then a = 0 or b = 0.

2. Properties of signs

(a) −0 = 0.
(b) −(−a) = a.
(c) (−a)b = −(ab) = a(−b).
(d) (−a)(−b) = ab.
(e) −a = (−1)a.

3. More distributive properties

(a) −(a+ b) = (−a) + (−b) = −a− b.
(b) −(a− b) = b− a.
(c) −(−a− b) = a+ b.
(d) a+ a = 2a.
(e) a(b− c) = ab− ac = (b− c)a.
(f) (a+ b)(c+ d) = ac+ ad+ bc+ bd.
(g) (a+ b)(c− d) = ac− ad+ bc− bd = (c− d)(a+ b).
(h) (a− b)(c− d) = ac− ad− bc+ bd.

4. Properties of inverses

(a) If a is nonzero, then so is a−1.
(b) 1−1 = 1.
(c) (a−1)−1 = a if a is nonzero.
(d) (−a)−1 = −(a−1) if a is nonzero.
(e) (ab)−1 = a−1b−1 if a and b are nonzero.
(f) (a/b)−1 = b/a if a and b are nonzero.

5. Properties of quotients

(a) a/1 = a.
(b) 1/a = a−1 if a is nonzero.
(c) a/a = 1 if a is nonzero.
(d) (a/b)(c/d) = (ac)/(bd) if b and d are nonzero.
(e) (a/b)/(c/d) = (ad)/(bc) if b, c, and d are nonzero.
(f) (ac)/(bc) = a/b if b and c are nonzero.
(g) a(b/c) = (ab)/c if c is nonzero.
(h) (ab)/b = a if b is nonzero.
(i) (−a)/b = −(a/b) = a/(−b) if b is nonzero.
(j) (−a)/(−b) = a/b if b is nonzero.
(k) a/b+ c/d = (ad+ bc)/(bd) if b and d are nonzero.
(l) a/b− c/d = (ad− bc)/(bd) if b and d are nonzero.
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6. Transitivity of inequalities

(a) If a < b and b < c, then a < c.
(b) If a ≤ b and b < c, then a < c.
(c) If a < b and b ≤ c, then a < c.
(d) If a ≤ b and b ≤ c, then a ≤ c.

7. Other Properties of inequalities

(a) If a ≤ b and b ≤ a, then a = b.
(b) If a < b, then −a > −b.
(c) 0 < 1.
(d) If a > 0, then a−1 > 0.
(e) If a < 0, then a−1 < 0.
(f) If a < b and a and b are both positive, then a−1 > b−1.
(g) If a < b and c < d, then a+ c < b+ d.
(h) If a ≤ b and c < d, then a+ c < b+ d.
(i) If a ≤ b and c ≤ d, then a+ c ≤ b+ d.
(j) If a < b and c > 0, then ac < bc.
(k) If a < b and c < 0, then ac > bc.
(l) If a ≤ b and c > 0, then ac ≤ bc.

(m) If a ≤ b and c < 0, then ac ≥ bc.
(n) If a < b and c < d, and a, b, c, d are nonnegative, then ac < bd.
(o) If a ≤ b and c ≤ d, and a, b, c, d are nonnegative, then ac ≤ bd.
(p) ab > 0 if and only if a and b are both positive or both negative.
(q) ab < 0 if and only if one is positive and the other is negative.
(r) There is no smallest positive real number.
(s) (Density) If a and b are two distinct real numbers, then there are infinitely many

rational numbers and infinitely many irrational numbers between a and b.

8. Properties of squares

(a) For every a, a2 ≥ 0.
(b) a2 = 0 if and only if a = 0.
(c) a2 > 0 if and only if a > 0.
(d) (−a)2 = a2.
(e) (a−1)2 = 1/a2.
(f) If a2 = b2, then a = ±b.
(g) If a < b and a and b are both nonnegative, then a2 < b2.
(h) If a < b and a and b are both negative, then a2 > b2.

9. Properties of Square Roots

(a) If a is any nonnegative real number, there is a unique nonnegative real number
√
a such

that
(√

a
)2

= a.

(b) If a = b and a and b are both nonnegative, then
√
a =

√
b.

(c) If a < b and a and b are both nonnegative, then
√
a <

√
b.

(d) If a2 = b and b is nonnegative, then a = ±
√
b.

10. Properties of Absolute Values

(a) If a is any real number, then |a| ≥ 0.
(b) |a| = 0 if and only if a = 0.
(c) |a| > 0 if and only if a 6= 0.
(d) | − a| = |a|.
(e) |a| =

√
a2.
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(f) |a| = max{a,−a}.
(g) |a−1| = 1/|a| if a 6= 0.
(h) |ab| = |a| |b|.
(i) |a/b| = |a|/|b| if b 6= 0.
(j) |a| = |b| if and only if a = ±b.
(k) If a and b are both nonnegative, then |a| ≥ |b| if and only if a ≥ b.
(l) If a and b are both negative, then |a| ≥ |b| if and only if a ≤ b.

(m) (The triangle inequality) |a+ b| ≤ |a|+ |b|.
(n) (The reverse triangle inequality)

∣

∣|a| − |b|
∣

∣ ≤ |a− b|.
11. Order properties of integers

(a) 1 is the smallest positive integer.
(b) If m and n are integers such that m > n, then m ≥ n+ 1.
(c) There is no largest or smallest integer.

12. Properties of Even and Odd Integers
In each of the following statements, m and n are assumed to be integers.

(a) n is even if and only if n = 2k for some integer k, and odd if and only if n = 2k + 1 for
some integer k.

(b) m+ n is even if and only if m and n are both odd or both even.
(c) m+ n is odd if and only if one of the summands is even and the other is odd.
(d) mn is even if and only if m or n is even.
(e) mn is odd if and only if m and n are both odd.
(f) n2 is even if and only if n is even, and odd if and only if n is odd.

13. Properties of Exponents
In these statements, m and n are positive integers.

(a) anbn = (ab)n.
(b) am+n = ambn.
(c) (am)n = amn.
(d) an/bn = (a/b)n if b is nonzero.
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