Math 134

Honors Calculus Handout 8: The *n*th Root Function

In Exercise 30, Section 2.6, you proved the following theorem:

Theorem 107 (Existence and Uniqueness of nth Roots). Let n be a positive integer.

- (a) If a and b are real numbers such that $0 \le a \le b$, then $a^n \le b^n$.
- (b) Every nonnegative real number x has a unique nonnegative nth root $x^{1/n}$.

In this note, we prove that the function $f(x) = x^{1/n}$ is continuous for all $x \ge 0$, and differentiable for all x > 0. First, a simple lemma. It is an analogue for the *n*th root function of part (a) above.

Lemma 108. Let n be a positive integer. If a and b are real numbers such that $0 \le a < b$, then $a^{1/n} < b^{1/n}$.

Proof. Under the given hypotheses, there are three possibilities: $a^{1/n} > b^{1/n}$, $a^{1/n} = b^{1/n}$, or $a^{1/n} < b^{1/n}$. In the first case, Theorem 107(a) implies that $(a^{1/n})^n > (b^{1/n})^n$, or a > b, which contradicts our hypothesis. In the second case, substitution yields $(a^{1/n})^n = (b^{1/n})^n$, or a = b, which again is a contradiction. The only remaining possibility is $a^{1/n} < b^{1/n}$.

Theorem 109 (Continuity of the nth Root Function). The function $f(x) = x^{1/n}$ is continuous on the interval $[0, \infty)$.

Proof. We need to show f is continuous from the right at x = 0, and continuous in the usual sense at x = c for every c > 0. Let's first take care of the x = 0 case. Given $\varepsilon > 0$, set $\delta = \varepsilon^n$. Then if $0 \le h < \delta$, Lemma 108 implies

$$|f(0+h) - f(0)| = |(0+h)^{1/n} - 0^{1/n}| = h^{1/n} < \delta^{1/n} = \varepsilon.$$

Now assume c > 0. Let $\varepsilon > 0$ be arbitrary. We're going to define three numbers $\delta_1, \delta_2, \delta_3$, and take δ to be the minimum of these three. First, in order for f(c+h) to make sense, we have to restrict h to be small enough that c+h > 0, which we can do by setting $\delta_1 = c$ and requiring that $|h| < \delta_1$.

Let's do some computations. We need to find δ small enough so that $|h| < \delta$ implies $|f(c+h) - f(c)| < \varepsilon$, or equivalently $-\varepsilon < (c+h)^{1/n} - c^{1/n} < \varepsilon$. Working with the second of these inequalities, we find

$$(c+h)^{1/n} - c^{1/n} < \varepsilon \quad \Leftrightarrow \quad (c+h)^{1/n} < c^{1/n} + \varepsilon$$
$$\Leftrightarrow \quad c+h < (c^{1/n} + \varepsilon)^n$$
$$\Leftrightarrow \quad h < (c^{1/n} + \varepsilon)^n - c,$$

where the second line is justified by Theorem 107(a) in the \Rightarrow direction and Lemma 110 in the \Leftarrow direction. Based on this, we set $\delta_1 = (c^{1/n} + \varepsilon)^n - c$. Since $c^{1/n} + \varepsilon > c^{1/n}$, Theorem 107(a) implies that $\delta_1 > 0$. Similarly,

$$-\varepsilon < (c+h)^{1/n} - c^{1/n} \quad \Leftrightarrow \quad c^{1/n} - \varepsilon < (c+h)^{1/n}.$$

If $\varepsilon \ge c^{1/n}$, this is automatically satisfied because the left-hand side is nonpositive and the right-hand side is positive. But if $\varepsilon < c^{1/n}$, we can continue:

$$c^{1/n} - \varepsilon < (c+h)^{1/n} \quad \Leftrightarrow \quad \left(c^{1/n} - \varepsilon\right)^n < c+h$$
$$\Leftrightarrow \quad -\left(c - \left(c^{1/n} - \varepsilon\right)^n\right) < h$$

Based on this, we set $\delta_2 = c - (c^{1/n} - \varepsilon)^n$ if $\varepsilon < c^{1/n}$, and otherwise just choose $\delta_2 = \delta_1$ (or any positive number, really). Another argument based on Theorem 107(a) shows that $\delta_2 > 0$.

Now set $\delta = \min(\delta_1, \delta_2, \delta_3)$. Then $|h| < \delta$ implies c + h > 0, $h < \delta_1$, and $-\delta_2 < h$, and therefore the computations above yield

$$-\varepsilon < (c+h)^{1/n} - c^{1/n} < \varepsilon,$$

which is what we wanted to prove.

For the proof of differentiability, we will need the following lemma.

Lemma 110. If n is a nonnegative integer and a and b are real numbers, then

$$(a-b)(a^{n}+a^{n-1}b+\dots+ab^{n-1}+b^{n}) = a^{n+1}-b^{n+1}.$$
(1)

Proof. First we dispose of the special case a = 0, in which case both sides of the equation reduce to $-b^{n+1}$.

Next we'll prove the formula in the special case a = 1. Using summation notation, we can write the formula we have to prove as

$$(1-b)\left(\sum_{i=0}^{n} b^{i}\right) = 1 - b^{n+1}.$$
(2)

We proceed by induction on n. The base case is n = 0, in which case both sides of the equation reduce to 1 - b.

Now let k be a nonnegative integer, and suppose (2) holds for n = k. Using the inductive hypothesis, we compute

$$(1-b)\left(\sum_{i=0}^{k+1} b^i\right) = (1-b)\left(\sum_{i=0}^{k} b^i + b^{k+1}\right)$$
$$= (1-b)\left(\sum_{i=0}^{k} b^i\right) + (1-b)b^{k+1}$$
$$= (1-b^{k+1}) + (b^{k+1}-b^{k+2})$$
$$= 1-b^{k+2},$$

which is what we had to prove. This completes the a = 1 case.

Now suppose a is an arbitrary positive real number. Factoring out a^{n+1} and using the special case we just proved, we find that

$$(a-b)(a^{n} + a^{n-1}b + \dots + ab^{n-1} + b^{n}) = a^{n+1}\left(1 - \frac{b}{a}\right)\left(1 + \left(\frac{b}{a}\right) + \dots \left(\frac{b}{a}\right)^{n}\right)$$
$$= a^{n+1}\left(1 - \left(\frac{b}{a}\right)^{n+1}\right)$$
$$= a^{n+1} - b^{n+1},$$

which completes the proof.

Now comes the main theorem.

Theorem 111 (Differentiability of the nth Root Function). The function $f(x) = x^{1/n}$ is differentiable for all x > 0, with derivative $f'(x) = \frac{1}{n}x^{\frac{1}{n}-1}$.

Proof. Suppose c is any positive real number; we will show that f is differentiable at x = c with the derivative given by $f'(c) = \frac{1}{n}c^{\frac{1}{n}-1}$. Let us consider the difference quotient:

$$\frac{f(c+h) - f(c)}{h} = \frac{(c+h)^{1/n} - c^{1/n}}{h}$$

To make the formulas simpler, we adopt the abbreviations $a = (c+h)^{1/n}$ and $b = c^{1/n}$, so that the difference quotient is (a-b)/h. Using Lemma 110 with n-1 in place of n, we find

$$\frac{f(c+h) - f(c)}{h} = \frac{a-b}{h} \left(\frac{a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}}{a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}} \right)$$
$$= \frac{a^n - b^n}{h \left(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}\right)}.$$

Noting that $a^n - b^n = ((c+h)^{1/n})^n - (c^{1/n})^n = (c+h) - c = h$, we can simplify this to

$$\frac{f(c+h) - f(c)}{h} = \frac{1}{a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}}.$$

By continuity of the *n*th root function, both $a = (c+h)^{1/n}$ and $b = c^{1/n}$ approach a limit of $c^{1/n}$ as $h \to 0$, and therefore the denominator approaches the limit $(c^{1/n})^{n-1} + (c^{1/n})^{n-1} + \cdots + (c^{1/n})^{n-1} = nc^{(n-1)/n}$. Since $c^{(n-1)/n} \neq 0$, we have

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \frac{1}{c^{(n-1)/n}}.$$

Simplification yields $f'(c) = \frac{1}{n}c^{\frac{1}{n}-1}$.