
Math 134 Honors Calculus Fall 2016

Handout 8: The nth Root Function

In Exercise 30, Section 2.6, you proved the following theorem:

Theorem 107 (Existence and Uniqueness of nth Roots). Let n be a positive integer.

(a) If a and b are real numbers such that 0 ≤ a < b, then an < bn.

(b) Every nonnegative real number x has a unique nonnegative nth root x1/n.

In this note, we prove that the function f(x) = x1/n is continuous for all x ≥ 0, and differentiable for
all x > 0. First, a simple lemma. It is an analogue for the nth root function of part (a) above.

Lemma 108. Let n be a positive integer. If a and b are real numbers such that 0 ≤ a < b, then a1/n < b1/n.

Proof. Under the given hypotheses, there are three possibilities: a1/n > b1/n, a1/n = b1/n, or a1/n < b1/n.
In the first case, Theorem 107(a) implies that

(

a1/n
)

n >
(

b1/n
)

n, or a > b, which contradicts our hypothesis.

In the second case, substitution yields
(

a1/n
)

n =
(

b1/n
)

n, or a = b, which again is a contradiction. The only

remaining possibility is a1/n < b1/n.

Theorem 109 (Continuity of the nth Root Function). The function f(x) = x1/n is continuous on the

interval [0,∞).

Proof. We need to show f is continuous from the right at x = 0, and continuous in the usual sense at x = c
for every c > 0. Let’s first take care of the x = 0 case. Given ε > 0, set δ = εn. Then if 0 ≤ h < δ, Lemma
108 implies

|f(0 + h)− f(0)| = |(0 + h)1/n − 01/n| = h1/n < δ1/n = ε.

Now assume c > 0. Let ε > 0 be arbitrary. We’re going to define three numbers δ1, δ2, δ3, and take δ to
be the minimum of these three. First, in order for f(c+ h) to make sense, we have to restrict h to be small
enough that c+ h > 0, which we can do by setting δ1 = c and requiring that |h| < δ1.

Let’s do some computations. We need to find δ small enough so that |h| < δ implies |f(c+h)−f(c)| < ε,
or equivalently −ε < (c+ h)1/n − c1/n < ε. Working with the second of these inequalities, we find

(c+ h)1/n − c1/n < ε ⇔ (c+ h)1/n < c1/n + ε

⇔ c+ h <
(

c1/n + ε
)n

⇔ h <
(

c1/n + ε
)n

− c,

where the second line is justified by Theorem 107(a) in the ⇒ direction and Lemma 110 in the ⇐ direction.
Based on this, we set δ1 =

(

c1/n + ε
)n

− c. Since c1/n + ε > c1/n, Theorem 107(a) implies that δ1 > 0.
Similarly,

−ε < (c+ h)1/n − c1/n ⇔ c1/n − ε < (c+ h)1/n.

If ε ≥ c1/n, this is automatically satisfied because the left-hand side is nonpositive and the right-hand side
is positive. But if ε < c1/n, we can continue:

c1/n − ε < (c+ h)1/n ⇔
(

c1/n − ε
)n

< c+ h

⇔ −
(

c−
(

c1/n − ε
)n)

< h.

Based on this, we set δ2 = c −
(

c1/n − ε
)n

if ε < c1/n, and otherwise just choose δ2 = δ1 (or any positive
number, really). Another argument based on Theorem 107(a) shows that δ2 > 0.

Now set δ = min(δ1, δ2, δ3). Then |h| < δ implies c + h > 0, h < δ1, and −δ2 < h, and therefore the
computations above yield

−ε < (c+ h)1/n − c1/n < ε,

which is what we wanted to prove.
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For the proof of differentiability, we will need the following lemma.

Lemma 110. If n is a nonnegative integer and a and b are real numbers, then

(a− b)(an + an−1b+ · · ·+ abn−1 + bn) = an+1 − bn+1. (1)

Proof. First we dispose of the special case a = 0, in which case both sides of the equation reduce to −bn+1.

Next we’ll prove the formula in the special case a = 1. Using summation notation, we can write the
formula we have to prove as

(1− b)

Å n
∑

i=0

bi
ã

= 1− bn+1. (2)

We proceed by induction on n. The base case is n = 0, in which case both sides of the equation reduce to
1− b.

Now let k be a nonnegative integer, and suppose (2) holds for n = k. Using the inductive hypothesis,
we compute

(1− b)

Å k+1
∑

i=0

bi
ã

= (1− b)

Å k
∑

i=0

bi + bk+1

ã

= (1− b)

Å k
∑

i=0

bi
ã

+ (1− b)bk+1

= (1− bk+1) + (bk+1 − bk+2)

= 1− bk+2,

which is what we had to prove. This completes the a = 1 case.

Now suppose a is an arbitrary positive real number. Factoring out an+1 and using the special case we
just proved, we find that

(a− b)(an + an−1b+ · · ·+ abn−1 + bn) = an+1

Å

1−
b

a

ãÅ

1 +

Å

b

a

ã

+ . . .

Å

b

a

ãnã

= an+1

Ç

1−

Å

b

a

ãn+1
å

= an+1 − bn+1,

which completes the proof.

Now comes the main theorem.

Theorem 111 (Differentiability of the nth Root Function). The function f(x) = x1/n is differentiable

for all x > 0, with derivative f ′(x) = 1
nx

1

n
−1.

Proof. Suppose c is any positive real number; we will show that f is differentiable at x = c with the derivative
given by f ′(c) = 1

nc
1

n
−1. Let us consider the difference quotient:

f(c+ h)− f(c)

h
=

(c+ h)1/n − c1/n

h
.

To make the formulas simpler, we adopt the abbreviations a = (c+h)1/n and b = c1/n, so that the difference
quotient is (a− b)/h. Using Lemma 110 with n− 1 in place of n, we find

f(c+ h)− f(c)

h
=

a− b

h

Å

an−1 + an−2b+ · · ·+ abn−2 + bn−1

an−1 + an−2b+ · · ·+ abn−2 + bn−1

ã

=
an − bn

h (an−1 + an−2b+ · · ·+ abn−2 + bn−1)
.
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Noting that an − bn =
(

(c+ h)1/n
)

n −
(

c1/n
)

n = (c+ h)− c = h, we can simplify this to

f(c+ h)− f(c)

h
=

1

an−1 + an−2b+ · · ·+ abn−2 + bn−1
.

By continuity of the nth root function, both a = (c+ h)1/n and b = c1/n approach a limit of c1/n as h → 0,
and therefore the denominator approaches the limit (c1/n)n−1 + (c1/n)n−1 + · · · + (c1/n)n−1 = nc(n−1)/n.
Since c(n−1)/n 6= 0, we have

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
=

1

c(n−1)/n
.

Simplification yields f ′(c) = 1
nc

1

n
−1.
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