In Exercise 30, Section 2.6, you proved the following theorem:
Theorem 107 (Existence and Uniqueness of \boldsymbol{n} th Roots). Let n be a positive integer.
(a) If a and b are real numbers such that $0 \leq a<b$, then $a^{n}<b^{n}$.
(b) Every nonnegative real number x has a unique nonnegative nth root $x^{1 / n}$.

In this note, we prove that the function $f(x)=x^{1 / n}$ is continuous for all $x \geq 0$, and differentiable for all $x>0$. First, a simple lemma. It is an analogue for the nth root function of part (a) above.

Lemma 108. Let n be a positive integer. If a and b are real numbers such that $0 \leq a<b$, then $a^{1 / n}<b^{1 / n}$.
Proof. Under the given hypotheses, there are three possibilities: $a^{1 / n}>b^{1 / n}, a^{1 / n}=b^{1 / n}$, or $a^{1 / n}<b^{1 / n}$. In the first case, Theorem 107(a) implies that $\left(a^{1 / n}\right)^{n}>\left(b^{1 / n}\right)^{n}$, or $a>b$, which contradicts our hypothesis. In the second case, substitution yields $\left(a^{1 / n}\right)^{n}=\left(b^{1 / n}\right)^{n}$, or $a=b$, which again is a contradiction. The only remaining possibility is $a^{1 / n}<b^{1 / n}$.
Theorem 109 (Continuity of the \boldsymbol{n} th Root Function). The function $f(x)=x^{1 / n}$ is continuous on the interval $[0, \infty)$.

Proof. We need to show f is continuous from the right at $x=0$, and continuous in the usual sense at $x=c$ for every $c>0$. Let's first take care of the $x=0$ case. Given $\varepsilon>0$, set $\delta=\varepsilon^{n}$. Then if $0 \leq h<\delta$, Lemma 108 implies

$$
|f(0+h)-f(0)|=\left|(0+h)^{1 / n}-0^{1 / n}\right|=h^{1 / n}<\delta^{1 / n}=\varepsilon
$$

Now assume $c>0$. Let $\varepsilon>0$ be arbitrary. We're going to define three numbers $\delta_{1}, \delta_{2}, \delta_{3}$, and take δ to be the minimum of these three. First, in order for $f(c+h)$ to make sense, we have to restrict h to be small enough that $c+h>0$, which we can do by setting $\delta_{1}=c$ and requiring that $|h|<\delta_{1}$.

Let's do some computations. We need to find δ small enough so that $|h|<\delta$ implies $|f(c+h)-f(c)|<\varepsilon$, or equivalently $-\varepsilon<(c+h)^{1 / n}-c^{1 / n}<\varepsilon$. Working with the second of these inequalities, we find

$$
\begin{aligned}
(c+h)^{1 / n}-c^{1 / n}<\varepsilon & \Leftrightarrow(c+h)^{1 / n}<c^{1 / n}+\varepsilon \\
& \Leftrightarrow c+h<\left(c^{1 / n}+\varepsilon\right)^{n} \\
& \Leftrightarrow h<\left(c^{1 / n}+\varepsilon\right)^{n}-c
\end{aligned}
$$

where the second line is justified by Theorem 107(a) in the \Rightarrow direction and Lemma 110 in the \Leftarrow direction. Based on this, we set $\delta_{1}=\left(c^{1 / n}+\varepsilon\right)^{n}-c$. Since $c^{1 / n}+\varepsilon>c^{1 / n}$, Theorem 107(a) implies that $\delta_{1}>0$. Similarly,

$$
-\varepsilon<(c+h)^{1 / n}-c^{1 / n} \quad \Leftrightarrow \quad c^{1 / n}-\varepsilon<(c+h)^{1 / n} .
$$

If $\varepsilon \geq c^{1 / n}$, this is automatically satisfied because the left-hand side is nonpositive and the right-hand side is positive. But if $\varepsilon<c^{1 / n}$, we can continue:

$$
\begin{aligned}
c^{1 / n}-\varepsilon<(c+h)^{1 / n} & \Leftrightarrow \quad\left(c^{1 / n}-\varepsilon\right)^{n}<c+h \\
& \Leftrightarrow \quad-\left(c-\left(c^{1 / n}-\varepsilon\right)^{n}\right)<h .
\end{aligned}
$$

Based on this, we set $\delta_{2}=c-\left(c^{1 / n}-\varepsilon\right)^{n}$ if $\varepsilon<c^{1 / n}$, and otherwise just choose $\delta_{2}=\delta_{1}$ (or any positive number, really). Another argument based on Theorem 107(a) shows that $\delta_{2}>0$.

Now set $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. Then $|h|<\delta$ implies $c+h>0, h<\delta_{1}$, and $-\delta_{2}<h$, and therefore the computations above yield

$$
-\varepsilon<(c+h)^{1 / n}-c^{1 / n}<\varepsilon
$$

which is what we wanted to prove.

For the proof of differentiability, we will need the following lemma.
Lemma 110. If n is a nonnegative integer and a and b are real numbers, then

$$
\begin{equation*}
(a-b)\left(a^{n}+a^{n-1} b+\cdots+a b^{n-1}+b^{n}\right)=a^{n+1}-b^{n+1} . \tag{1}
\end{equation*}
$$

Proof. First we dispose of the special case $a=0$, in which case both sides of the equation reduce to $-b^{n+1}$.
Next we'll prove the formula in the special case $a=1$. Using summation notation, we can write the formula we have to prove as

$$
\begin{equation*}
(1-b)\left(\sum_{i=0}^{n} b^{i}\right)=1-b^{n+1} \tag{2}
\end{equation*}
$$

We proceed by induction on n. The base case is $n=0$, in which case both sides of the equation reduce to $1-b$.

Now let k be a nonnegative integer, and suppose (2) holds for $n=k$. Using the inductive hypothesis, we compute

$$
\begin{aligned}
(1-b)\left(\sum_{i=0}^{k+1} b^{i}\right) & =(1-b)\left(\sum_{i=0}^{k} b^{i}+b^{k+1}\right) \\
& =(1-b)\left(\sum_{i=0}^{k} b^{i}\right)+(1-b) b^{k+1} \\
& =\left(1-b^{k+1}\right)+\left(b^{k+1}-b^{k+2}\right) \\
& =1-b^{k+2}
\end{aligned}
$$

which is what we had to prove. This completes the $a=1$ case.
Now suppose a is an arbitrary positive real number. Factoring out a^{n+1} and using the special case we just proved, we find that

$$
\begin{aligned}
(a-b)\left(a^{n}+a^{n-1} b+\cdots+a b^{n-1}+b^{n}\right) & =a^{n+1}\left(1-\frac{b}{a}\right)\left(1+\left(\frac{b}{a}\right)+\ldots\left(\frac{b}{a}\right)^{n}\right) \\
& =a^{n+1}\left(1-\left(\frac{b}{a}\right)^{n+1}\right) \\
& =a^{n+1}-b^{n+1}
\end{aligned}
$$

which completes the proof.

Now comes the main theorem.
Theorem 111 (Differentiability of the \boldsymbol{n} th Root Function). The function $f(x)=x^{1 / n}$ is differentiable for all $x>0$, with derivative $f^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1}$.

Proof. Suppose c is any positive real number; we will show that f is differentiable at $x=c$ with the derivative given by $f^{\prime}(c)=\frac{1}{n} c^{\frac{1}{n}-1}$. Let us consider the difference quotient:

$$
\frac{f(c+h)-f(c)}{h}=\frac{(c+h)^{1 / n}-c^{1 / n}}{h}
$$

To make the formulas simpler, we adopt the abbreviations $a=(c+h)^{1 / n}$ and $b=c^{1 / n}$, so that the difference quotient is $(a-b) / h$. Using Lemma 110 with $n-1$ in place of n, we find

$$
\begin{aligned}
\frac{f(c+h)-f(c)}{h} & =\frac{a-b}{h}\left(\frac{a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}}{a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}}\right) \\
& =\frac{a^{n}-b^{n}}{h\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)} .
\end{aligned}
$$

Noting that $a^{n}-b^{n}=\left((c+h)^{1 / n}\right)^{n}-\left(c^{1 / n}\right)^{n}=(c+h)-c=h$, we can simplify this to

$$
\frac{f(c+h)-f(c)}{h}=\frac{1}{a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}} .
$$

By continuity of the nth root function, both $a=(c+h)^{1 / n}$ and $b=c^{1 / n}$ approach a limit of $c^{1 / n}$ as $h \rightarrow 0$, and therefore the denominator approaches the limit $\left(c^{1 / n}\right)^{n-1}+\left(c^{1 / n}\right)^{n-1}+\cdots+\left(c^{1 / n}\right)^{n-1}=n c^{(n-1) / n}$. Since $c^{(n-1) / n} \neq 0$, we have

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\frac{1}{c^{(n-1) / n}} .
$$

Simplification yields $f^{\prime}(c)=\frac{1}{n} c^{\frac{1}{n}-1}$.

