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1. Doughnuts, Coffee Cups, and Spheres

If you heard anything about topology before you started studying it formally, it
is likely that one of the first examples you saw was coffee cups and doughnuts: The
surface of a doughnut is topologically equivalent (or homeomorphic) to the surface of
a coffee cup with one handle, but not to a sphere. This example is used to illustrate
that homeomorphisms can bend, stretch, and shrink but not tear or collapse.

Using the topological tools we have developed so far, you should be able to see how
to prove that coffee-cup and doughnut surfaces are homeomorphic. One reasonable
model of a “doughnut surface” is the surface of revolution obtained by revolving a
circle around the z-axis; another is the product space S1 ×S1, called the torus. As
we have already seen in class, these two spaces are both homeomorphic to a certain
quotient space of a square, and thus are homeomorphic to each other. Once you
have decided on a specific subset of R3 to use as a model of a “coffee-cup surface,”
it is a straightforward (though not necessarily easy!) matter to construct an explicit
homeomorphism between it and the doughnut surface. (By virtue of the Closed
Map Lemma, or Theorem 26.6 of Munkres, it is sufficient to construct a continu-
ous bijection from one space to the other, because such a map is automatically a
homeomorphism.)

But it is a much more difficult problem to show that a torus is not homeomorphic
to a sphere. Intuitively, we expect that any bijective map from the sphere to the
torus would somehow have to “rip a hole” in the sphere, thus violating continuity.
But this intuition is far from being a proof. How do we know that a really clever
mathematician won’t come up with a new idea for a homeomorphism tomorrow?
In order to prove that spaces are not homeomorphic to each other, we usually look
for topological invariants—topological properties that must be preserved by home-
omorphisms. If two spaces have different invariants, they cannot be homeomorphic.

So far in this course, we have seen two powerful topological invariants. The sim-
plest one is connectedness: if two spaces are homeomorphic, then they are either
both connected or both disconnected. Thus we know that R � {0} is not homeo-
morphic to R. A more subtle application of connectedness was used in Exercise 1
of §24 of Munkres to show that R is not homeomorphic to R

2, and that no two of
the intervals (0, 1), (0, 1], and [0, 1] are homeomorphic to each other.

Another important topological invariant is compactness: a compact space cannot
be homeomorphic to a non-compact one. Thus S2 is not homeomorphic to R

2. But
none of these invariants are powerful enough to address the question of whether S2

is homeomorphic to a torus. Nor are they powerful enough to tell us whether R2 is
homeomorphic to the space R2

�{0}, called the punctured plane. In this note, we
introduce a new topologically invariant property called simple connectedness, and
show that it is powerful enough to distinguish between the sphere and the torus,
the plane and the punctured plane, and a good many other pairs of spaces as well.
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2. Path Homotopy

The intuition we are trying to capture is that a simply connected space is one
that has no “holes,” in a certain sense. Roughly speaking, we will detect “holes”
by wrapping “strings” around them: a simply connected space is one in which any
loop of string can be continuously shrunk to a point while remaining in the space.

Here are the definitions. Suppose X and Y are topological spaces, and let I
denote the interval [0, 1] ⊂ R, called the unit interval. If f, g : X → Y are two
continuous maps, a homotopy from f to g is a continuous map H : X × I → Y
satisfying

H(x, 0) = f(x) for all x ∈ X ;

H(x, 1) = g(x) for all x ∈ X.

Given such a homotopy, for each t ∈ I we get a map Ht : X → Y defined by
Ht(x) = H(x, t). Each Ht is continuous because it can be written as the composition
H ◦jt, where jt : X → X×I is the map j(x) = (x, t). Thus we think of H as defining
a one-parameter family of maps that vary continuously from H0 = f to H1 = g as
t goes from 0 to 1.

In this note, we will be working only with a special type of homotopies of paths.
Recall that a path in a topological space X is a continuous map f : [a, b] → X,
where [a, b] ⊂ R is a closed interval. The points x = f(a) and y = f(b) are called
the starting point and ending point of f , respectively, and we say that f is a
path from x to y. As we saw in Chapter 2 of Munkres, a space X is said to be
path-connected if for each x, y ∈ X, there is a path in X from x to y.

The next theorem is an analogue for path connectedness of the main theorem on
connectedness.

Theorem 1. Every continuous image of a path-connected space is path-connected.

Proof: Suppose X is path-connected, and G : X → Y is a continuous map. Let
Z = G(X); we need to show that Z is path-connected. Given x, y ∈ Z, there are
points x0, y0 ∈ X such that x = G(x0) and y = G(y0). Because X is path-connected,
there is a path f : [a, b] → X such that f(a) = x0 and f(b) = y0. Then G ◦ f is a
path in Z from x to y. �

Suppose f : [a, b] → X and g : [a, b] → X are two paths in X, defined on the same
domain [a, b], and both with the same starting point x and ending point y. A path
homotopy from f to g is a continuous map H : [a, b]× I → X satisfying

H(s, 0) = f(s) for all s ∈ [a, b];

H(s, 1) = g(s) for all s ∈ [a, b];

H(a, t) = x for all t ∈ I;

H(b, t) = y for all t ∈ I.

In other words, H is a homotopy from f to g, with the additional requirement that
each path Ht in the homotopy starts at x and ends at y. A path homotopy is also
sometimes called a fixed-endpoint homotopy. It is useful to think of t as “time,”
and to visualize a path homotopy as a continuous deformation of the path from
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f to g as time runs from t = 0 to t = 1. In this note, we will consistently use s
to denote the parameter along a path (the “space variable”), and reserve t for the
“time variable” in a homotopy.

If there exists a path homotopy from f to g, then we say that f and g are path-
homotopic.

Lemma 2. Let X be a topological space, let x, y be points in X, and let [a, b] be
a fixed interval in R. “Path-homotopic” is an equivalence relation on the set of all
paths in X from x to y with domain [a, b].

Proof: See Exercise 1. �

The next lemma shows that continuous maps preserve path homotopy.

Lemma 3. Suppose X and Y are topological spaces, G : X → Y is a continuous
map, and f, g : [a, b] → X are paths from x to y. If f and g are path-homotopic,
then so are G ◦ f and G ◦ g.

Proof: Suppose f and g are path-homotopic, and let H : [a, b]× I → X be a path
homotopy from f to g. It follows by composition that G ◦H is continuous, and the
hypotheses imply

G ◦H(s, 0) = G(x) for all s ∈ [a, b];

G ◦H(s, 1) = G(y) for all s ∈ [a, b];

G ◦H(a, t) = G ◦ f(t) for all t ∈ I;

G ◦H(b, t) = G ◦ g(t) for all t ∈ I.

Thus G ◦H is a path homotopy from G ◦ f to G ◦ g. �

Here is the kind of path we will be mainly concerned with: a loop is a path whose
starting and ending points are the same; that is, a continuous map f : [a, b] → X
such that f(a) = f(b). If x = f(a) = f(b) is the common starting and ending
point, we say the loop is based at x. A loop is said to be null-homotopic if
it is path-homotopic to the constant loop with the same base point (i.e., the loop
c : [a, b] → X such that c(s) = x for all s ∈ [a, b]).

A topological space is said to be simply connected if it is path-connected and
every loop in the space is null-homotopic. A space that is not simply connected is
said to bemultiply connected. The next theorem shows that simple connectedness
(and therefore also multiple connectedness) is a topologically invariant property.

Theorem 4. Suppose X and Y are homeomorphic topological spaces. Then X is
simply connected if and only if Y is simply connected.

Proof: Let G : X → Y be a homeomorphism, and suppose X is simply connected.
It follows from Theorem 1 that Y is path-connected, so we just need to show that
every loop in Y is null-homotopic. Let f : [a, b] → Y be a loop. Then G−1 ◦ f is
a loop in X, which is path-homotopic to some constant loop c by hypothesis. It
follows from Lemma 3 that f = G ◦ (G−1 ◦ f

)
is path-homotopic to the constant

loop G ◦ c. The converse is proved in the same way, with the roles of G and G−1

reversed. �
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3. Some Simply Connected Spaces

Next we will show that some familiar spaces are simply connected. A subset
K ⊂ R

n is said to be convex if whenever x and y are two points in K, the entire
line segment from x to y is contained in K. More precisely, this means that for each
t ∈ [0, 1], the point (1− t)x+ ty = x+ t(y−x) lies in K. Clearly Rn itself is convex.
The next lemma gives several more examples of convex sets.

Lemma 5. The following subsets of Rn are convex.

(a) Every open ball B(a, ε).
(b) Every closed ball B(a, ε).
(c) Every product set of the form K1 × · · · ×Kn, where K1, . . . ,Kn are convex

subsets of R.

Proof: To prove that open balls are convex, let B(a, ε) ⊂ R
n be an open ball,

and suppose x and y are points in B(a, ε). Then for each t ∈ [0, 1], the triangle
inequality gives

‖a− ((1− t)x+ ty)‖ = ‖(1 − t)(a− x) + t(a− y)‖
≤ ‖(1 − t)(a− x)‖+ ‖t(a− y)‖
= (1− t)‖a− x‖+ t‖a− y‖
< (1− t)ε+ tε = ε.

This shows that the line segment from x to y is contained in B(a, ε), and thus B(a, ε)
is convex. The same computation with “<” replaced by “≤” shows that closed balls
are convex.

Finally, suppose K1, . . . ,Kn are convex subsets of R, and let x = (x1, . . . , xn) and
y = (y1, . . . , yn) be points in K1 × · · · ×Kn. Then for each t ∈ [0, 1], the fact that
each Ki is convex implies that

(1− t)x+ ty =
(
(1− t)x1 + ty1, . . . , (1− t)xn + tyn

) ∈ K1 × · · · ×Kn.

Thus K1 × · · · ×Kn is convex. �

The next theorem expresses the most important property of convex sets for our
purposes.

Theorem 6. Suppose K is a convex subset of Rn. If f, g : [a, b] → X are any two
paths in K with the same domain and the same starting and ending points, then f
and g are path-homotopic to each other.

Proof: Let f, g : [a, b] → K be two paths in K from x to y. Define a map
H : [a, b]× I → K as follows:

H(s, t) = (1− t)f(s) + tg(s).

For each s, this map traces out the line segment from f(s) to g(s) as t goes from 0
to 1. The fact that K is convex guarantees that H(s, t) ∈ K for all (s, t) ∈ [a, b]× I.
The component functions of H are polynomials in t and the component functions
of f and g, so H is continuous. It follows immediately from the definition that
H(s, 0) = f(s) and H(s, 1) = g(s) for all s ∈ [a, b], and H(a, t) = x and H(b, t) = y
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for all t ∈ I; thus H is a path homotopy from f to g, called a straight-line
homotopy. �

Corollary 7. Every convex subset of Rn is simply connected.

Proof: Let K be a convex subset of Rn. We showed earlier in the course that K
is path-connected, and Theorem 6 implies that every loop in K is path-homotopic
to a constant loop. �

For future use, we note also the following simple corollary of Theorem 6.

Corollary 8. If X is a topological space that is homeomorphic to a convex subset
of Rn, then any two paths in X with the same domain and the same starting and
ending points are path-homotopic to each other.

Proof: Given X as in the hypothesis, let G : X → K be a homeomorphism to a
convex subset K ⊂ Rn. If f, g : [a, b] → X are two paths as in the statement of the
lemma, then G ◦ f and G ◦ g are path-homotopic by the argument in the preceding
paragraph, and therefore f = G−1 ◦ (G ◦ f) is path-homotopic to g = G−1 ◦ (G ◦ f)
by Lemma 3. �

Next we consider spheres. Recall that for any n ≥ 0, the unit n-sphere is the
space Sn ⊂ R

n+1 defined by

Sn =
{
x ∈ R

n+1
∣∣ ‖x‖ = 1

}
,

with the subspace topology. Thus S0 is the two-element discrete space {±1}, S1 is
the unit circle in the plane, and S2 is the familiar spherical surface in R

3, often just
called the sphere. The points N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) in Sn are
called the north pole and south pole, respectively.

The following lemma is the key to proving that some spheres are simply connected.

Lemma 9. For any n ≥ 0, Sn with the north pole or south pole removed is homeo-
morphic to R

n.

Proof: First consider the north pole. Define a continuous map f : Sn
� {N} → R

n

as follows:

f(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn).

This map is called stereographic projection. It can be described geometrically
as follows: Given a point x = (x1, . . . , xn+1) ∈ Sn

� {N}, stereographic projection
sets f(x) = u, where (u, 0) is the point where the line through N and x meets the
subspace R

n × {0}.
Now define another continuous map g : Rn → Sn

� {N} by

g(u1, . . . , un) =
1

‖u‖2 + 1

(
2u1, . . . , 2un, ‖u‖2 − 1

)
.

A straightforward computation (using the fact that ‖x‖2 = 1) shows that g◦f(x) = x
for all x ∈ Sn, and f ◦ g(u) = u for all u ∈ R

n; thus g is a continuous two-sided
inverse for f , which shows that f is a homeomorphism.
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Finally, note that the reflection map r : Sn → Sn given by r(x1, . . . , xn, xn+1) =
(x1, . . . , xn,−xn+1) restricts to a homeomorphism from Sn

� {N} to Sn
� {S}, so

Sn
� {S} is also homeomorphic to R

n. �

We can now begin to address the question of which spheres are simply connected.
First, S0 is the discrete space {±1}, which is not even connected. The circle S1 is
path-connected, but we will skip over the question of whether it is simply connected
for now. It turns out that for n ≥ 2, each sphere Sn is simply connected. The
key is the previous lemma. It implies, for example, that any loop in Sn that does
not pass through the north pole can be considered as a loop in Sn

� {N}, which
is homeomorphic to R

n and therefore simply connected. In fact, it can be shown
that if x is any point in Sn, there is a rotation in R

n+1 that takes x to N and
restricts to a homeomorphism from Sn

� {x} to Sn
� {N}, so Sn

� {x} is also
homeomorphic to R

n. Therefore, any loop in Sn that misses at least one point is
null-homotopic. Intuitively, one might expect that every loop in the sphere would
have to miss at least one point. Unfortunately, this is not the case. In 1890, the
Italian mathematician Giuseppe Peano discovered a way to construct a continuous
surjective map f : I → I × I, called a space-filling curve. (See Theorem 44.1
in Munkres for an example of such a curve.) Since I × I is homeomorphic to the
closed unit disk D = {(x, y) | x2 + y2 ≤ 1} (can you prove it?), and there is a
surjective continuous map p : D → S2 (see Example 4 on page 139 of Munkres), we
can compose these three maps to obtain a continuous surjective path in S2:

I
f−→ I × I

≈−→ D
p−→ S2.

However, as the proof of the next theorem shows, when n ≥ 2, every loop in Sn

is path-homotopic to a loop that misses a point, and this suffices to prove that Sn

is simply connected.

Theorem 10. For n ≥ 2, the unit n-sphere Sn is simply connected.

Proof: Suppose n ≥ 2. Example 5 on page 156 of Munkres shows that Sn is
path-connected, so we need only show that every loop in Sn is null-homotopic.

Suppose f : [a, b] → Sn is any loop. Let N and S be the north and south poles as
above, and define open subsets U, V ⊂ Sn by U = Sn

� {N}, V = Sn
� {S}. Then

both U and V are homeomorphic to R
n. For the time being, let us assume that f

is based at a point other than N . We will show that f is path-homotopic to a loop
whose image does not contain N .

Because f is continuous, the collection {f−1(U), f−1(V )} is an open cover of [a, b].
By the Lebesgue number lemma (Lemma 27.5 in Munkres), there is a number δ > 0
such that every subinterval of [a, b] of width less than δ is contained in one of these
sets. Choose an integer m such that (b − a)/m < δ, and let ai = a + i(b − a)/m
for i = 0, . . . ,m, so that a = a0 < a1 < · · · < am = b and [ai−1, ai] has length
(b − a)/m < δ for each i. It then follows that f maps each subinterval [ai−1, ai]
into U or V (or perhaps both). For each i, denote the restriction of f to the ith
subinterval by fi = f |[ai−1,ai] : [ai−1, ai] → Sn. By shrinking the codomain, we can
consider each fi as a map into either U or V , which is continuous by the characteristic
property of the subspace topology.
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Let J be the set of all indices i ∈ {1, . . . ,m} such that the image of fi is contained
in U , and let J ′ be the complementary set {1, . . . ,m}� J . For each i ∈ J , the path
fi does not pass through N , so we leave it alone. On the other hand, for each
i ∈ J ′, fi is a path in V = Sn

� {S}. Note that V � {N} = Sn
� {S,N}, which

is homeomorphic to R
n
� {0}. Since this space is path-connected (see Example 4

on page 156 of Munkres), there is a path gi : [ai−1, ai] → V � {N} that has the
same starting and ending points as fi. (This is the step that does not work when
n = 1, because R

1
� {0} is not connected.) Because V is homeomorphic to R

n,
it follows from Corollary 8 that fi and gi are path-homotopic in V , and applying
Lemma 3 with G : V → Sn equal to the inclusion map shows that fi and gi are
path-homotopic in Sn. Let Hi : [ai−1, ai]× I → Sn be a path homotopy from fi to
gi.

Now define a new loop g : [a, b] → Sn by

g(s) =

{
fi(s), s ∈ [ai−i, ai], i ∈ J,

gi(s), s ∈ [ai−i, ai], i ∈ J ′.

This loop is continuous by the pasting lemma, and it has the same base point as f .
By construction, the image of g does not contain N . Then define H : [a, b]× I → Sn

by

H(s, t) =

{
fi(s), s ∈ [ai−i, ai], i ∈ J,

Hi(s, t), s ∈ [ai−i, ai], i ∈ J ′.
Again, H is continuous by the pasting lemma, and a straightforward verification
shows that it is a path homotopy from f to g. Thus f is path-homotopic to a path
g whose image lies entirely in U .

Finally, the fact that U is simply connected guarantees that g is path-homotopic
in U (and hence also in Sn by Lemma 3) to a constant path. Because path homotopy
is transitive, it follows that f is null-homotopic.

The only case we have not dealt with is the case in which f is based at the north
pole N . In that case, we just carry out the same argument with the roles of N and
S reversed. �

4. The Circle

So far, we have not been able to prove that any particular space is multiply
connected. To do so, we have to find a loop for which we can prove that there
exists no path homotopy from the given loop to a constant loop. Like many other
nonexistence results, this requires some new ideas.

As we noted in the proof of Theorem 10, the proof of that theorem breaks down
when n = 1. This is not just a flaw in our technique: in fact, as we will see in this
section, S1 is multiply connected.

The basic idea of what we are about to do is simple. To analyze a loop f : [a, b] →
S1, we will construct a function that measures the angle from the positive x-axis
to the ray through f(s), and compute the net change in angle as s goes from a
to b. Because a loop starts and ends at the same point, this net change must be
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an integral multiple of 2π. As we will see below, the only loops in S1 that are
null-homotopic are those whose net change in angle is zero.

To begin studying angles in S1, consider the map p : R → S1 defined by

(1) p(u) = (cos u, sinu).

We have seen this map earlier in the course; it is a quotient map that “winds”
the real line infinitely many times around the circle. For each u ∈ R, the point
p(u) is a point on the circle, and the number u is one of the possible values of the
angle measured counterclockwise from the positive x-axis to the ray that starts at
the origin and passes through p(u) ∈ S1. It follows from standard properties of
trigonometric functions that p(u) = p(u′) if and only if u−u′ is an integral multiple
of 2π.

If W is a subset of S1, an angle function for W is a continuous map θ : W → R

such that p ◦ θ = iW , or equivalently (x, y) = (cos θ(x, y), sin θ(x, y)) for all (x, y) ∈
W . The next theorem shows that it is impossible to find an angle function defined
on all of S1.

Theorem 11. There does not exist a continuous function θ : S1 → R such that
p ◦ θ = iS1 .

Proof: See Exercise 2. �

However, for some proper subsets of S1, angle functions are easy to construct.
For example, define four open subsets X±, Y± ⊂ S1 by

(2)
X+ = {(x, y) ∈ S1 | x > 0}, Y+ = {(x, y) ∈ S1 | y > 0},
X− = {(x, y) ∈ S1 | x < 0}, Y− = {(x, y) ∈ S1 | y < 0}.

On each of these subsets, we can define a continuous angle function as follows:

(3)

θ(x, y) = arctan
y

x
, (x, y) ∈ X+;

θ(x, y) = arccot
x

y
, (x, y) ∈ Y+;

θ(x, y) = π + arctan
y

x
, (x, y) ∈ X−;

θ(x, y) = π + arccot
x

y
, (x, y) ∈ Y−.

(Recall that the arctangent and arccotangent functions are defined as follows: for
any real number r, arctan r is the unique angle θ ∈ (π/2, π/2) such that tan θ = r,
and arccot r is the unique angle θ ∈ (0, π) such that cot θ = r. It is proved in
advanced calculus courses that both functions are continuous.)

Now suppose f : [a, b] → S1 is a path. An angle function for f is a continuous
function ϕ : [a, b] → R such that p◦ϕ = f , or equivalently f(s) = (cosϕ(s), sinϕ(s))
for all s ∈ [a, b]. (Note the distinction between an angle function for a path and an
angle function for a subset of S1, defined earlier.) An angle function for f is also
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often called a lift of f , because it makes the following diagram commute:

R

[a, b]
f
�

ϕ
�

S1.

p
�

(A diagram like this one is said to commute, or to be commutative, if the maps
between two spaces obtained by following arrows around either side of the diagram
are equal. In this case, to say the diagram commutes is to say that p ◦ ϕ = f .)

If there were an angle function for all of S1, say θ : S1 → R, then our task would
be easy: for any path f : [a, b] → S1 we could just define ϕ = θ ◦ f ; then the fact
that p ◦ θ = iS1 would guarantee that p ◦ ϕ = p ◦ θ ◦ f = iS1 ◦ f = f , so ϕ would
be an angle function for f . But, as we saw above, this is impossible. Nonetheless,
as the next theorem shows, it is always possible to construct an angle function for
a path.

Theorem 12. Every path in S1 admits an angle function.

Proof: Let f : [a, b] → S1 be a path. Define X±, Y± ⊂ S1 as in (2) above. Then the
four subsets

{
f−1(X+), f

−1(Y+), f
−1(X−), f−1(Y−)

}
form an open cover of [a, b]. As

in the proof of Theorem 10, let δ be a Lebesgue number for this cover, let m be an
integer large enough that (b−a)/m < δ, and let ai = a+(b−a)/m for i = 0, . . . ,m.
Then for each i, f maps [ai−1, ai] into one of the four sets X±, Y± ⊂ S1.

We will prove by induction on k that for each k = 1, . . . ,m, there exists an angle
function for f on the subinterval [a0, ak]. To begin, we can define an angle function
ϕ1 for f on the subinterval [a0, a1] by setting ϕ1 = θ ◦ f , where θ is given by one
of the four formulas in (3), depending on which of the four subsets contains the
image f

(
[a0, a1]

)
. Suppose now that k ≥ 1, and assume that we have defined an

angle function ϕk : [a0, ak] → R for the restriction of f to [a0, ak]. If k = m, we
are done. If not, there is an angle function ϕ̃ : [ak, ak+1] → R, again defined by
ϕ̃ = θ ◦ f where θ is given by one of the formulas in (3). The numbers ϕk(ak)
and ϕ̃(ak) satisfy p(ϕk(ak)) = f(ak) = p(ϕ̃(ak)), so there is an integer N such that
ϕk(ak) = ϕ̃(ak) + 2πN . Define a new function ϕk+1 : [a0, ak+1] → R by

ϕk+1(s) =

{
ϕk(s), s ∈ [a0, ak]

ϕ̃(s) + 2πN, s ∈ [ak, ak+1].

These two definitions agree at the point ak where they overlap, so ϕk+1 is continuous
by the pasting lemma. It is an angle function for f on [a0, ak+1] because p(ϕk(s)) =
f(s) for s ∈ [a0, ak] and p(ϕ̃(s) + 2πN) = p(ϕ̃(s)) = f(s) for s ∈ [ak, ak+1]. This
completes the induction. �

An angle function for a path is not unique, because we can always add an integral
multiple of 2π and get a different angle function for the same path. But the next
theorem shows that this is the only leeway.

Theorem 13. Let f : [a, b] → S1 be a path. Any two angle functions for f differ by
a constant integral multiple of 2π, and if two such angle functions agree for some
s0 ∈ [a, b], then they agree for all s ∈ [a, b].
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Proof: To prove the first statement, suppose ϕ1 and ϕ2 are both angle functions
for the same path f . Define a map g : [a, b] → R by g(s) = (ϕ1(s) − ϕ2(s))/(2π).
Since p(ϕ1(s)) = f(s) = p(ϕ2(s)) for each s, it follows that g is integer-valued. We
proved in class that any integer-valued continuous function on a connected domain
is constant, so g is a constant function, which implies that ϕ1 and ϕ2 differ by a
constant integral multiple of 2π. The second statement then follows from the first,
because if two angle functions agree at one point, then their constant difference must
be zero. �

Now suppose f : [a, b] → S1 is a loop based at a point (x0, y0) ∈ S1, and let
ϕ : [a, b] → R be an angle function for it. Because p(ϕ(a)) = f(a) = f(b) = p(ϕ(b)),
it follows that ϕ(a) and ϕ(b) differ by an integral multiple of 2π. We define the
winding number of f (also called the degree of f) to be the integer

N(f) =
1

2π
(ϕ(b)− ϕ(a)).

Intuitively, N(f) represents the net number of times f(s) “winds around the circle,”
with a positive winding number indicating that it winds counterclockwise, and a
negative one indicating clockwise.

Lemma 14. The winding number of a loop is well defined, independently of the
choice of angle function used to compute it.

Proof: This is an immediate consequence of the fact that two different angle
functions for the same loop must differ by a constant. �

Computing the winding number of a specific loop is usually just a matter of
writing down an appropriate angle function, and subtracting its ending value from
its starting value. Here are some examples.

Example 15. [Winding Numbers]

(a) Every constant loop in S1 has winding number zero, because every angle
function for it is constant.

(b) Let n be any integer, and define a loop fn : [0, 2π] → S1 by

fn(s) = (cosns, sinns).

Then ϕ(s) = ns is an angle function for fn, so its winding number is N(fn) =
(ϕ(2π) − ϕ(0))/(2π) = n. This shows that for every integer, there is a loop
in S1 with that winding number.

The next lemma shows that any two loops that stay sufficiently close to each
other have the same winding number.

Lemma 16. Suppose f, g : [a, b] → S1 are two loops with the same base point. If
|g(s)− f(s)| < 2 for all s ∈ [a, b], then N(f) = N(g).

Proof: Let ϕ1 : [a, b] → R and ϕ2 : [a, b] → R be angle functions for f and g,
respectively. Since p(ϕ1(a)) = f(a) = g(a) = p(ϕ2(a)), the two numbers ϕ1(a) and
ϕ2(a) differ by 2πN for some N ∈ Z. After replacing ϕ2 by ϕ2 + 2πN , we can
assume that ϕ1(a) = ϕ2(a).



11

Let n = N(f) and m = N(g), and assume for the sake of contradiction that
n 	= m. Without loss of generality, we can assume m > n. This means that
ϕ1(b) = ϕ1(a)+2πn and ϕ2(b) = ϕ2(a)+2πm. Because ϕ1(a) = ϕ2(a), we conclude
that ϕ2(b)−ϕ1(b) = 2π(m−n). Since m−n is a positive integer, we have m−n ≥ 1,
and thus

ϕ2(b)− ϕ1(b) ≥ 2π.

Now the function g : [a, b] → R defined by g(s) = ϕ2(s)−ϕ1(s) is continuous, and
satisfies g(a) = 0 and g(b) ≥ 2π. Thus by the intermediate value theorem, there is
some s0 ∈ [a, b] such that g(s0) = π. But this means ϕ2(s0) = ϕ1(s0) + π, and so

g(s0) = p(ϕ2(s0)) = (cosϕ2(s0), sinϕ2(s0))

= (cos(ϕ1(s0) + π), sin(ϕ1(s0) + π)) = (− cosϕ1(s0),− sinϕ1(s0)) = −f(s0).

From this it follows that

|g(s0)− f(s0)| = |2g(s0)| = 2,

contradicting the hypothesis. �

Here is our main theorem about loops in the circle.

Theorem 17. Let f, g : [a, b] → S1 be loops with the same base point. Then f and
g are path-homotopic if and only if they have the same winding number.

Proof: Suppose first that f and g have the same winding number. As in the pre-
ceding proof, there are angle functions ϕ1, ϕ2 : [a, b] → S1 for f and g, respectively,
such that ϕ1(a) = ϕ2(a). The assumption that f and g have the same winding
number then implies that ϕ1(b) = ϕ2(b). By Theorem 6, the two paths ϕ1 and ϕ2

are path-homotopic in R. Since f = p ◦ ϕ1 and g = p ◦ϕ2, it follows from Lemma 3
that f and g are path-homotopic.

Conversely, suppose f and g are path-homotopic, and let H : [a, b] × I → S1 be
a path homotopy from f to g. Because H is a continuous function from a compact
metric space to another metric space, it is uniformly continuous by Theorem 27.6 in
Munkres. Applying the definition of uniform continuity with ε = 2, we conclude that
there exists δ > 0 such that ‖H(s, t)−H(s′, t′)‖ < 2 whenever ‖(s, t)− (s′, t′)‖ < δ.
Letm be an integer large enough that 1/m < δ, and for i = 0, . . . ,m, let Hi : [a, b] →
S1 be the path Hi(s) = H(s, i/m). For any i ∈ {1, . . . ,m} and any s ∈ [a, b], we
have ‖(s, i/m) − (s, (i − 1)/m)‖ = 1/m < δ, and thus ‖Hi(s) − Hi−1(s)‖ < 2. It
follows from Lemma 16 that Hi−1 andHi have the same winding number. Therefore,
N(f) = N(H0) = N(H1) = · · · = N(Hm) = N(g), so f and g have the same winding
number. �

Theorem 18. S1 is not simply connected.

Proof: The loop f1 : [0, 2π] → S1 given by f1(s) = (cos s, sin s) has winding number
1 (see Example 15), while any constant loop has winding number zero. Thus f1 is
not path-homotopic to a constant loop. �
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5. Retractions

We now have exactly one space that we know to be multiply connected: the unit
circle. Can we find others? Of course, spaces that are homeomorphic to the unit
circle—such as ellipses, squares, or other circles—are also multiply connected. But
can we find more interesting examples?

Unlike connectedness and compactness, neither simple connectedness nor multiple
connectedness is preserved by arbitrary continuous maps (see Exercise 3). However,
if we restrict our attention to a particular kind of map, then we can say something
useful. Recall that a retraction is a continuous map r : X → A, where X is a
topological space and A is a subspace of X, such that r(a) = a for all a ∈ A (see
Exercise 2 on page 144 of Munkres). If A ⊂ X and there exists a retraction from X
to A, then we say A is a retract of X.

Here is the tool that will enable us to identify other multiply connected spaces.

Theorem 19. A retract of a simply connected space is simply connected.

Proof: SupposeX is a simply connected space, A ⊂ X is a subspace, and r : A → X
is a retraction. Let j : A → X denote the inclusion map. It follows immediately
from the definition of a retraction that r ◦ j = iA, the identity map of A.

Suppose f : [a, b] → A is a loop in A based at x ∈ A. Then j ◦ f : [a, b] → X is a
loop in X, also based at x. Because X is simply connected, j ◦ f is path-homotopic
in X to the constant loop c : [a, b] → X given by c(s) ≡ x.

It follows from Lemma 3 that r ◦ (j ◦ f) is path-homotopic in A to the constant
loop r ◦ c. However, the fact that r is a retraction implies that

r ◦ (j ◦ f) = (r ◦ j) ◦ f = iA ◦ f = f,

and r ◦ c is a constant loop because r ◦ c(s) = r(x) = x for all s ∈ [a, b]. Thus f is
null-homotopic, which shows that A is simply connected. �

This theorem says that under the assumption that A is a retract of X, if X is
simply connected then A is simply connected. But it is actually the contrapositive
of this last statement that is most useful, as a way to prove a space is not simply
connected. For ease of reference, we state this as a corollary.

Corollary 20. If X is a topological space that retracts onto a multiply connected
subspace, then X is multiply connected. �

Here are some typical applications of this theorem; additional applications are
described in the exercises. Recall the two homeomorphism problems that we intro-
duced in the introduction:

• Is the torus homeomorphic to the sphere?
• Is the punctured plane homeomorphic to the plane?

Now we have the tools to answer both questions.

Theorem 21. The punctured plane is multiply connected.
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Proof: Consider the map r : R2
� {0} → S1 defined by

r(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
.

This is continuous because its component functions are continuous, and it satisfies
r(x, y) = (x, y) for (x, y) ∈ S1; thus r is a retraction. Since S1 is multiply connected,
so is R2

� {0}. �

Corollary 22. The punctured plane is not homeomorphic to R
2.

Proof: The punctured plane is multiply connected, but R2 is not. �

Theorem 23. The torus is multiply connected.

Proof: Define a map r : S1 × S1 → S1 × {(1, 0)} by r((x1, y1), (x2, y2)) =
((x1, y1), (1, 0)). It is easy to check that r is a retraction onto the subspace
S1 × {(1, 0)}, which is homeomorphic to S1. Since S1 is multiply connected, so
is S1 × S1. �

Corollary 24. The torus is not homeomorphic to the sphere. �

We end this note by pointing out that the idea of simple connectedness can be
carried much further than we have done here. For example, we still do not have the
tools to show that the punctured plane is not homeomorphic to a twice-punctured
plane, or that a torus is not homeomorphic to a two-holed doughnut surface. The
problem is that simple connectedness is a qualitative property; in order to answer
questions like these, one must develop a way of measuring quantitatively how badly
a space fails to be simply connected.

This can be done by moving beyond topological invariants that are simple yes/no
questions, and developing ones that are more quantitative. The simplest such in-
variant is called the fundamental group of a space. It is a group in the algebraic
sense (i.e., a set with an associative multiplication operator, in which there is a mul-
tiplicative identity and each element has a multiplicative inverse) attached to each
topological space. The elements of the group are equivalence classes of loops with
a fixed base point modulo path homotopy, and two loops (or, more precisely, two
equivalence classes) are multiplied by first following one loop and then the other.

With some work, one can show that set of equivalence classes satisfies all of the re-
quired properties to form a group, and that homeomorphic spaces have fundamental
groups that are isomorphic (meaning there is a bijective correspondence between
them that preserves multiplication, identities, and inverses). This is the starting
point for the vast branch of topology called algebraic topology. Chapters 9–14 of
Munkres give a good introduction to the fundamental group; for more advanced
topics in algebraic topology, I recommend Munkres’s Elements of Algebraic Topol-
ogy or Allen Hatcher’s Algebraic Topology, or you might try my book Introduction
to Topological Manifolds.
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Exercises

1. Prove Lemma 2 (path homotopy is an equivalence relation). [Hint: for
transitivity, given a homotopy H from f to g and another homotopy H ′
from g to h, define a new homotopy from f to h by first following H at
double the normal speed, and then following H ′ at double the normal speed.
Be sure to verify that your new homotopy is continuous.]

2. Prove Theorem 11 (there is no angle function on all of S1). [Hint: Use the
result of Exercise 2 in §24 of Munkres.]

3. Give explicit examples to show that continuous images of simply connected
spaces need not be simply connected, and continuous images of multiply
connected spaces need not be multiply connected. (No proofs necessary;
just give a precise description of the spaces and the maps.)

4. Suppose A is any subset of R2 that contains some circle but not its center.
Prove that A is multiply connected.

5. Suppose U is an open subset of R2, and V is obtained from U be deleting a
nonempty finite set of points. Prove that U is multiply connected.

6. Suppose U is an open subset of R2, and W is obtained from U by deleting
a countably infinite set of points. Is W necessarily path-connected? Is it
necessarily multiply connected? [Hint: How many lines are there through a
point in R

2? How many circles are there centered at a point?]
7. Suppose X1, . . . ,Xn are nonempty topological spaces. Prove that the prod-

uct space X1 × . . . ×Xn is simply connected if and only if all of the spaces
X1, . . . ,Xn are simply connected.

8. Prove that for each n ≥ 1, Rn
� {0} is homeomorphic to Sn−1 × R

+, and
conclude that Rn

� {0} is simply connected when n ≥ 3.
9. Prove that R2 is not homeomorphic to R

n if n ≥ 3.
10. Which of the following spaces are homeomorphic to each other? Prove your

answers correct. You may use any theorems or previous exercises from this
note or from Chapters 1–3 of Munkres. [Hint: Begin by making a table show-
ing which spaces are connected, which are compact, and which are simply
connected. There are exactly seven different spaces here, up to homeomor-
phism.]
(a) R

(b) R� {0}
(c) R

2

(d) R
2
� {0}

(e) R
3

(f) S1 × R

(g) S1 × S1

(h) S1 × S2

(i) S2 × S2

(j) S1
� {(0, 1)}

(k) S1
� {(0, 1), (0,−1)}

(l) S2
� {(0, 0, 1)}

(m) S2 � {(0, 0, 1), (0, 0,−1)}


